Heart attack and stroke are often caused by atherosclerotic plaque rupture, which happens without warning most of the time. Magnetic resonance imaging (MRI)-based atherosclerotic plaque models with fluid-structure interactions (FSIs) have been introduced to perform flow and stress/strain analysis and identify possible mechanical and morphological indices for accurate plaque vulnerability assessment. For coronary arteries, cyclic bending associated with heart motion and anisotropy of the vessel walls may have significant influence on flow and stress/strain distributions in the plaque. FSI models with cyclic bending and anisotropic vessel properties for coronary plaques are lacking in the current literature. In this paper, cyclic bending and anisotropic vessel properties were added to 3D FSI coronary plaque models so that the models would be more realistic for more accurate computational flow and stress/strain predictions. Six computational models using one ex vivo MRI human coronary plaque specimen data were constructed to assess the effects of cyclic bending, anisotropic vessel properties, pulsating pressure, plaque structure, and axial stretch on plaque stress/strain distributions. Our results indicate that cyclic bending and anisotropic properties may cause 50–800% increase in maximum principal stress (Stress-P1) values at selected locations. The stress increase varies with location and is higher when bending is coupled with axial stretch, nonsmooth plaque structure, and resonant pressure conditions (zero phase angle shift). Effects of cyclic bending on flow behaviors are more modest (9.8% decrease in maximum velocity, 2.5% decrease in flow rate, 15% increase in maximum flow shear stress). Inclusion of cyclic bending, anisotropic vessel material properties, accurate plaque structure, and axial stretch in computational FSI models should lead to a considerable improvement of accuracy of computational stress/strain predictions for coronary plaque vulnerability assessment. Further studies incorporating additional mechanical property data and in vivo MRI data are needed to obtain more complete and accurate knowledge about flow and stress/strain behaviors in coronary plaques and to identify critical indicators for better plaque assessment and possible rupture predictions.

1.
American Heart Association
, 2003,
Heart Disease and Stroke Statistics–2003 Update
,
American Heart Association
,
Dallas, TX.
2.
1998,
The Vulnerable Atherosclerotic Plaque: Understanding, Identification, and Modification
,
V.
Fuster
,
J. F.
Cornhill
,
R. E.
Dinsmore
,
J. T.
Fallon
,
W.
Insull
,
P.
Libby
,
S.
Nissen
,
M. E.
Rosenfeld
, and
W. D.
Wagner
, eds.,
Futura Publishing
,
Armonk, NY
.
3.
Fuster
,
V.
,
Stein
,
B.
,
Ambrose
,
J. A.
,
Badimon
,
L.
,
Badimon
,
J. J.
, and
Chesebro
,
J. H.
, 1990, “
Atherosclerotic Plaque Rupture and Thrombosis, Evolving Concept
,”
Circulation
0009-7322,
82
, pp.
II47
59
.
4.
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1993, “
The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
588
594
.
5.
Naghavi
,
M.
,
Libby
,
P.
,
Falk
,
E.
,
Casscells
,
S. W.
,
Litovsky
,
S.
,
Rumberger
,
J.
,
Badimon
,
J. J.
,
Stefanadis
,
C.
,
Moreno
,
P.
,
Pasterkamp
,
G.
,
Fayad
,
Z.
,
Stone
,
P. H.
,
Waxman
,
S.
,
Raggi
,
P.
,
Madjid
,
M.
,
Zarrabi
,
A.
,
Burke
,
A.
,
Yuan
,
C.
,
Fitzgerald
,
P. J.
,
Siscovick
,
D. S.
,
de Korte
,
C. L.
,
Aikawa
,
M.
,
Juhani Airaksinen
,
K. E.
,
Assmann
,
G.
,
Becker
,
C. R.
,
Chesebro
,
J. H.
,
Farb
,
A.
,
Galis
,
Z. S.
,
Jackson
,
C.
,
Jang
,
I. K.
,
Koenig
,
W.
,
Lodder
,
R. A.
,
March
,
K.
,
Demirovic
,
J.
,
Navab
,
M.
,
Priori
,
S. G.
,
Rekhter
,
M. D.
,
Bahr
,
R.
,
Grundy
,
S. M.
,
Mehran
,
R.
,
Colombo
,
A.
,
Boerwinkle
,
E.
,
Ballantyne
,
C.
,
Insull
,
W.
, Jr.
,
Schwartz
,
R. S.
,
Vogel
,
R.
,
Serruys
,
P. W.
,
Hansson
,
G. K.
,
Faxon
,
D. P.
,
Kaul
,
S.
,
Drexler
,
H.
,
Greenland
,
P.
,
Muller
,
J. E.
,
Virmani
,
R.
,
Ridker
,
P. M.
,
Zipes
,
D. P.
,
Shah
,
P. K.
, and
Willerson
,
J. T.
, 2003, “
From Vulnerable Plaque to Vulnerable Patient: A Call for New Definitions and Risk Assessment Strategies: I
,”
Circulation
0009-7322,
108
(
14
), pp.
1664
72
.
6.
Naghavi
M
,
Libby
,
P.
,
Falk
,
E.
,
Casscells
,
S. W.
,
Litovsky
,
S.
,
Rumberger
,
J.
,
Badimon
,
J. J.
,
Stefanadis
,
C.
,
Moreno
,
P.
,
Pasterkamp
,
G.
,
Fayad
,
Z.
,
Stone
,
P. H.
,
Waxman
,
S.
,
Raggi
,
P.
,
Madjid
,
M.
,
Zarrabi
,
A.
,
Burke
,
A.
,
Yuan
,
C.
,
Fitzgerald
,
P. J.
,
Siscovick
,
D. S.
,
de Korte
,
C. L.
,
Aikawa
,
M.
,
Juhani Airaksinen
,
K. E.
,
Assmann
,
G.
,
Becker
,
C. R.
,
Chesebro
,
J. H.
,
Farb
,
A.
,
Galis
,
Z. S.
,
Jackson
,
C.
,
Jang
,
I. K.
,
Koenig
,
W.
,
Lodder
,
R. A.
,
March
,
K.
,
Demirovic
,
J.
,
Navab
,
M.
,
Priori
,
S. G.
,
Rekhter
,
M. D.
,
Bahr
,
R.
,
Grundy
,
S. M.
,
Mehran
,
R.
,
Colombo
,
A.
,
Boerwinkle
,
E.
,
Ballantyne
,
C.
,
Insull
,
W.
, Jr.
,
Schwartz
,
R. S.
,
Vogel
,
R.
,
Serruys
,
P. W.
,
Hansson
,
G. K.
,
Faxon
,
D. P.
,
Kaul
,
S.
,
Drexler
,
H.
,
Greenland
,
P.
,
Muller
,
J. E.
,
Virmani
,
R.
,
Ridker
,
P. M.
,
Zipes
,
D. P.
,
Shah
,
P. K.
, and
Willerson
,
J. T.
, 2003, “
From Vulnerable Plaque to Vulnerable Patient: A Call for New Definitions and Risk Assessment Strategies: Part II
,”
Circulation
0009-7322,
108
(
15
), pp.
1772
8
.
7.
Association for Eradication of Heart Attack (AEHA)
, 2005, “
Leaders in Cardiology From AEHA’s National SHAPE Task Force Propose New
,” AEHA Press Release, BusinessWire, http://www.businesswire.com/cgi-bin/mmg.cgi?eid=4835722http://www.businesswire.com/cgi-bin/mmg.cgi?eid=4835722.
8.
Bock
,
R. W.
,
Gray-Weale
,
A. C.
,
Mock
,
F. P.
,
Stats
,
M. A.
,
Robinson
,
D. A.
,
Irwig
,
L.
, and
Lusby
,
R. J.
, 1993, “
The Natural History of Asymptomatic Carotid Artery Disease
,”
J. Vasc. Surg.
0741-5214,
17
, pp.
160
171
.
9.
Boyle
,
J. J.
, 1997, “
Association of Coronary Plaque Rupture and Atherosclerotic Inflammation
,”
J. Pathol.
0022-3417,
181
, pp.
93
99
.
10.
Burke
,
A. P.
,
Farb
,
A.
,
Malcom
,
G. T.
,
Liang
,
Y. H.
,
Smialek
,
J. E.
, and
Virmani
,
R.
, 1999, “
Plaque Rupture and Sudden Death Related to Exertion in Men With Coronary Artery Disease
,”
J. Am. Med. Assoc.
0098-7484,
281
, pp.
921
926
.
11.
Falk
,
E.
,
Shah
,
P. K.
, and
Fuster
,
V.
, 1995, “
Coronary Plaque Disruption
,”
Circulation
0009-7322,
92
, pp.
657
71
.
12.
Ohayon
,
J.
,
Pierre
,
T.
,
Finet
,
G.
, and
Rioufol
,
G.
, 2001, “
In-Vivo Prediction of Human Coronary Plaque Rupture Location Using Intravascular Ultrasound and the Finite Element Method
,”
Coron. Artery Dis.
0954-6928,
12
, pp.
655
663
.
13.
Park
,
J. B. R.
, and
Tobis
,
J. M.
, 1997, “
Spontaneous Plaque Rupture and Thrombus Formation in the Left Main Coronary Artery Documented by Intravascular Ultrasound
,”
Cathet. Cardiovasc. Diagn.
,
40
, pp.
358
360
. 0098-6569
14.
Shah
,
P. K.
, 2002, “
Pathophysiology of Coronary Thrombosis: Role of Plaque Rupture and Plaque Erosion
,”
Prog. Cardiovasc. Dis.
0033-0620,
44
(
5
), pp.
357
68
.
15.
Virmani
,
R.
,
Kolodgie
,
F. D.
,
Burke
,
A. P.
,
Farb
,
A.
, and
Schwartz
,
S. M.
, 2000, “
Lessons From Sudden Coronary Death: A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
20
(
5
), pp.
1262
75
.
16.
van der Wal
,
A. C.
,
Becker
,
A. E.
,
van der Loos
,
C. M.
, and
Das
,
P. K.
, 1994, “
Site of Intimal Rupture or Erosion of Thrombosed Coronary Atherosclerotic Plaques is Characterized by an Inflammatory Process Irrespective of the Dominant Plaque Morphology
,”
Circulation
0009-7322,
89
, pp.
36
44
.
17.
Gatehouse
,
P. D.
,
Keegan
,
J.
,
Crowe
,
L. A.
,
Masood
,
S.
,
Mohiaddin
,
R. H.
,
Kreitner
,
K. F.
, and
Firmin
,
D. N.
, 2005, “
Applications of Phase-Contrast Flow and Velocity Imaging in Cardiovascular MRI
,”
Eur. Radiol.
0938-7994,
15
(
10
), pp.
2172
84
.
18.
Tang
,
D.
,
Yang
,
C.
, and
Yuan
,
C.
, 2006, “
Mechanical Image Analysis Using Finite Element Method
,”
Carotid Disease: The Role of Imaging in Diagnosis and Management
,
J. H.
Gillard
,
T. S.
Hatsukami
,
M.
Graves
, and
C.
Yuan
, eds.,
Cambridge University Press
,
Cambridge, England
, pp.
323
339
.
19.
Yuan
,
C.
,
Mitsumori
,
L. M.
,
Beach
,
K. W.
, and
Maravilla
,
K. R.
, 2001, “
Special Review: Carotid Atherosclerotic Plaque: Noninvasive MR Characterization and Identification of Vulnerable Lesions
,”
Radiology
0033-8419,
221
, pp.
285
299
.
20.
Pedersen
,
P. C.
,
Chakareski
,
J.
, and
Lara-Montalvo
,
R.
, 2003, “
Ultrasound Characterization of Arterial Wall Structures Based on Integrated Backscatter Profiles
,”
Proceedings for the 2003 SPIE Med Imaging Symposium
, San Diego, CA, pp.
115
126
.
21.
Liang
,
Y.
,
Zhu
,
H.
, and
Friedman
,
M. H.
, 2008, “
Estimation of the Transverse Strain Tensor in the Arterial Wall Using IVUS Image Registration
,”
Ultrasound Med. Biol.
0301-5629,
34
(
11
), pp.
1832
1845
.
22.
McCord
,
B. N.
, 1992, “
Fatigue of Atherosclerotic Plaque
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
23.
McCord
,
B. N.
, and
Ku
,
D. N.
, 1993, “
Mechanical Rupture of the Atherosclerostic Plaque Fibrous Cap
,”
Proceedings of the 1993 Bioengineering Conference
, Colorado, BED-Vol.
24
, pp.
324
327
.
24.
Cheng
,
G. C.
,
Loree
,
H. M.
,
Kamm
,
R. D.
,
Fishbein
,
M. C.
, and
Lee
,
R. T.
, 1993, “
Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions, A Structural Analysis With Histopathological Correlation
,”
Circulation
0009-7322,
87
, pp.
1179
1187
.
25.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
26.
Huang
,
H.
,
Virmani
,
R.
,
Younis
,
H.
,
Burke
,
A. P.
,
Kamm
,
R. D.
, and
Lee
,
R. T.
, 2001, “
The Impact of Calcification on the Biomechanical Stability of Atherosclerotic Plaques
,”
Circulation
0009-7322,
103
, pp.
1051
1056
.
27.
Kaazempur-Mofrad
,
M. R.
,
Isasi
,
A. G.
,
Younis
,
H. F.
,
Chan
,
R. C.
,
Hinton
,
D. P.
,
Sukhova
,
G.
,
Lamuraglia
,
G. M.
,
Lee
,
R. T.
, and
Kamm
,
R. D.
, 2004, “
Characterization of the Atherosclerotic Carotid Bifurcation Using MRI, Finite Element Modeling, and Histology
,”
Ann. Biomed. Eng.
0090-6964,
32
(
7
), pp.
932
946
.
28.
Long
,
Q.
,
Xu
,
X. Y.
,
Ariff
,
B.
,
Thom
,
S. A.
,
Hughes
,
A. D.
, and
Stanton
,
A. V.
, 2000, “
Reconstruction of Blood Flow Patterns in a Human Carotid Bifurcation: A Combined CFD and MRI Study
,”
J. Magn. Reson Imaging
1053-1807,
11
, pp.
299
311
.
29.
Prosi
,
M.
,
Perktold
,
K.
,
Ding
,
Z.
, and
Friedman
,
M. H.
, 2004, “
Influence of Curvature Dynamics on Pulsatile Coronary Artery Flow in a Realistic Bifurcation Model
,”
J. Biomech.
0021-9290,
37
, pp.
1767
75
.
30.
Steinman
,
D. A.
, 2002, “
Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries
,”
Ann. Biomed. Eng.
0090-6964,
30
(
4
), pp.
483
97
.
31.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Saffitz
,
J. E.
,
Sicard
,
G. A.
,
Pilgram
,
T. K.
, and
Yuan
,
C.
, 2005, “
Quantifying Effects of Plaque Structure and Material Properties on Stress Behaviors in Human Atherosclerotic Plaques Using 3D FSI Models
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
7
), pp.
1185
1194
.
32.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Saffitz
,
J. E.
,
Petruccelli
,
J. D.
,
Sicard
,
G. A.
, and
Yuan
,
C.
, 2005, “
Local Maximal Stress Hypothesis and Computational Plaque Vulnerability Index for Atherosclerotic Plaque Assessment
,”
Ann. Biomed. Eng.
0090-6964,
33
(
12
), pp.
1789
1801
.
33.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
O. K.
,
Sicard
,
G. A.
,
Saffitz
,
J. E.
, and
Yuan
,
C.
, 2004, “
3D MRI-Based Multi-Component FSI Models for Atherosclerotic Plaques a 3-D FSI Model
,”
Ann. Biomed. Eng.
0090-6964,
32
(
7
), pp.
947
960
.
34.
Yang
,
C.
,
Tang
,
D.
,
Yuan
,
C.
,
Hatsukami
,
T. S.
,
Zheng
,
J.
, and
Woodard
,
P. K.
, 2007, “
In Vivo/Ex Vivo MRI-Based 3D Models With Fluid-Structure Interactions for Human Atherosclerotic Plaques Compared With Fluid/Wall-Only Models
,”
Comput. Model. Eng. Sci.
1526-1492,
19
(
3
), pp.
233
245
.
35.
Tang
,
D.
, 2006, “
Flow in Healthy and Stenosed Arteries
,”
Wiley Encyclopedia of Biomedical Engineering
,
Wiley
,
New Jersey
, Article 1525, pp.
1
16
.
36.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics
,
Springer-Verlag
,
New York
.
37.
Ku
,
D. N.
, 1997, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
399
434
.
38.
Moore
,
J. E.
, Jr.
,
Weydahl
,
E. S.
, and
Santamarina
,
A.
, 2001, “
Frequency Dependence of Dynamic Curvature Effects on Flow Through Coronary Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
2
), pp.
129
33
.
39.
Balestrini
,
J. L.
, and
Billiar
,
K. L.
, 2009, “
Magnitude and Duration of Stretch Modulate Fibroblast Remodeling
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
5
), p.
051005
.
40.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
41.
K. J.
Bathe
, ed., 2007,
Theory and Modeling Guide, Vol I and II: ADINA and ADINA-F
,
ADINA R & D, Inc.
,
Watertown
.
42.
Tang
,
D.
,
Chen
,
X.
,
Yang
,
C.
,
Kobayashi
,
S.
, and
Ku
,
D. N.
, 2002, “
A Viscoelastic Model and Meshless GFD Method for Blood Flow in Collapsible Stenotic Arteries
,”
Advances in Computational Engineering & Sciences
,
International Conference on Computational Engineering and Sciences
,
Tech Science Press
,
Norcross, GA
, Chap. 11.
43.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
,
Zheng
,
J.
, and
Vito
,
R. P.
, 2003, “
Effects of Stenosis Asymmetry on Blood Flow and Artery Compression: A 3-D FSI Model
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
1182
1193
.
44.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
, and
Ku
,
D. N.
, 2004, “
Effect of a Lipid Pool on Stress/Strain Distributions in Stenotic Arteries: 3D FSI Models
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
363
370
.
45.
Kobayashi
,
S.
,
Tsunoda
,
D.
,
Fukuzawa
,
Y.
,
Morikawa
,
H.
,
Tang
,
D.
, and
Ku
,
D. N.
, 2003, “
Flow and Compression in Arterial Models of Stenosis With Lipid Core
,”
Proceedings of the 2003 ASME Summer Bioengineering Conference
, pp.
497
498
.
46.
Kobayashi
,
S.
,
Fukuzawa
,
Y.
,
Ayama
,
Y.
,
Morikawa
,
H.
,
Tang
,
D.
, and
Ku
,
D. N.
, 2005, “
Pulsatile Flow and Deformation in Curved Stenosis Models of Arterial Disease—Influence of Cyclic Change of Curvature on Flow and Deformation
,”
Proceedings of ASME 2005 Summer Bioengineering Conference
, Paper No. b0062819.
47.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Schulze-Bause
,
C. A. J.
, 2002, “
A Layer-Specific Three-Dimensional Model for the Simulation of Balloon Angioplasty Using Magnetic Resonance Imaging and Mechanical Testing
,”
Ann. Biomed. Eng.
0090-6964,
30
(
6
), pp.
753
767
.
48.
Holzapfel
,
G. A.
,
Sommer
,
G.
, and
Regitnig
,
P.
, 2004, “
Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
5
), pp.
657
665
.
49.
Friedman
,
M. H.
,
Bargeron
,
C. B.
,
Deters
,
O. J.
,
Hutchins
,
G. M.
, and
Mark
,
F. F.
, 1987, “
Correlation Between Wall Shear and Intimal Thickness at a Coronary Artery Branch
,”
Atherosclerosis
0021-9150,
68
, pp.
27
33
.
50.
Huang
,
X.
,
Yang
,
C.
,
Yuan
,
C.
,
Liu
,
F.
,
Canton
,
G.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Sicard
,
G. A.
, and
Tang
,
D.
, 2009, “
Patient-Specific Artery Shrinkage and 3D Zero-Stress State in Multi-Component 3D FSI Models for Carotid Atherosclerotic Plaques Based on In Vivo MRI Data
,”
Mol. Cell. Biochem.
0300-8177,
6
(
2
), pp.
121
134
.
You do not currently have access to this content.