During temporomandibular joint (TMJ) function, the mandibular condylar cartilage plays a prime role in the distribution and absorption of stresses generated over the condyle. Biomechanical characterization of the tissue under compression, however, is still incomplete. The present study investigates the regional variations in the elastic and equilibrium moduli of the condylar cartilage under high strains using unconfined compression and stress relaxation, with aims to facilitate future tissue engineering studies. Porcine condylar cartilages from five regions (anterior, central, lateral, medial, and posterior) were tested under unconfined compression. Elastic moduli were obtained from the linear regions of the stress-strain curves corresponding to the continuous deformation. Equilibrium moduli were obtained from the stress relaxation curves using the Kelvin model. The posterior region was the stiffest, followed by the middle (medial, central, and lateral) regions and the anterior region, respectively. Specifically, in terms of the equilibrium modulus, the posterior region was 1.4 times stiffer than the middle regions, which were in turn 1.7 times stiffer than the anterior region, although only the difference between anterior and posterior regions was statistically significant. No significant differences in stiffness were observed among the medial, central, lateral, and posterior regions. A positive correlation between the thickness and stiffness of the cartilage was observed, reflecting that their regional variations may be related phenomena caused in response to cartilage loading patterns. Condylar cartilage was less stiff under compression than in tension. In addition, condylar cartilage under compression appears to behave in a manner similar to the TMJ disc in terms of the magnitude of moduli and drastic initial drop in stress after a ramp strain.

1.
Piette
,
E.
, 1993, “
Anatomy of the Human Temporomandibular Joint. An Updated Comprehensive Review
,”
Acta Stomatol. Belg.
0001-7000,
90
(
2
), pp.
103
127
.
2.
Jagger
,
R. G.
,
Bates
,
J. F.
, and
Kopp
,
S.
, 1994,
Temporomandibular Joint Dysfunction: The Essentials
,
Butterworth Heinemann
,
Oxford
.
3.
Carlsson
,
G. E.
, and
LeResche
,
L.
, 1995, “
Epidemiology of Temporomandibular Disorders
,”
Temporomandibular Disorders and Related Pain Conditions
,
B. J.
Sessle
,
P. S.
Bryant
, and
R.
Dionne
, eds.,
IASP
,
Seattle, WA
, pp.
211
226
.
4.
Farrar
,
W. B.
, and
McCarty
,
W. L.
, Jr.
, 1979, “
The TMJ Dilemma
,”
J. Ala. Dent. Assoc.
0002-4198,
63
(
1
), pp.
19
26
.
5.
Kirk
,
W. S.
, Jr.
, 1990, “
Morphologic Differences Between Superior and Inferior Disc Surfaces in Chronic Internal Derangement of the Temporomandibular Joint
,”
J. Oral Maxillofac Surg.
0278-2391,
48
(
5
), pp.
455
460
.
6.
Kondoh
,
T.
,
Westesson
,
P. L.
,
Takahashi
,
T.
, and
Seto
,
K.
, 1998, “
Prevalence of Morphological Changes in the Surfaces of the Temporomandibular Joint Disc Associated With Internal Derangement
,”
J. Oral Maxillofac Surg.
0278-2391,
56
(
3
), pp.
339
343
.
7.
Hu
,
K.
,
Radhakrishnan
,
P.
,
Patel
,
R. V.
, and
Mao
,
J. J.
, 2001, “
Regional Structural and Viscoelastic Properties of Fibrocartilage Upon Dynamic Nanoindentation of the Articular Condyle
,”
J. Struct. Biol.
1047-8477,
136
(
1
), pp.
46
52
.
8.
Patel
,
R. V.
, and
Mao
,
J. J.
, 2003, “
Microstructural and Elastic Properties of the Extracellular Matrices of the Superficial Zone of Neonatal Articular Cartilage by Atomic Force Microscopy
,”
Front. Biosci.
1093-4715,
8
, pp.
18
25
.
9.
Kuboki
,
T.
, 1997, “
Viscoelastic Properties of the Pig Temporomandibular Joint Articular Soft Tissues of the Condyle and Disc
,”
J. Dent. Res.
0022-0345,
76
(
11
), pp.
1760
1769
.
10.
Tanaka
,
E.
,
Yamano
,
E.
,
Dalla-Bona
,
D. A.
,
Watanabe
,
M.
,
Inubushi
,
T.
,
Shirakura
,
M.
,
Sano
,
R.
,
Takahashi
,
K.
,
van Eijden
,
T.
, and
Tanne
,
K.
, 2006, “
Dynamic Compressive Properties of the Mandibular Condylar Cartilage
,”
J. Dent. Res.
0022-0345,
85
(
6
), pp.
571
575
.
11.
Liu
,
Z. J.
, and
Herring
,
S. W.
, 2000, “
Bone Surface Strains and Internal Bony Pressures at the Jaw Joint of the Miniature Pig During Masticatory Muscle Contraction
,”
Arch. Oral Biol.
0003-9969,
45
(
2
), pp.
95
112
.
12.
Hohl
,
T. H.
, and
Tucek
,
W. H.
, 1982, “
Measurement of Condylar Loading Forces by Instrumented Prosthesis in the Baboon
,”
J. Maxillofac Surg.
0301-0503,
10
(
1
), pp.
1
7
.
13.
Bermejo
,
A.
,
Gonzalez
,
O.
, and
Gonzalez
,
J. M.
, 1993, “
The Pig as an Animal Model for Experimentation on the Temporomandibular Articular Complex
,”
Oral Surg., Oral Med., Oral Pathol.
0030-4220,
75
(
1
), pp.
18
23
.
14.
Covell
,
D. A.
, Jr.
, and
Herring
,
S. W.
, 1995, “
Periosteal Migration in the Growing Mandible: An Animal Model
,”
Am. J. Orthod. Dentofacial Orthop.
0889-5406,
108
(
1
), pp.
22
29
.
15.
Herring
,
S. W.
, 2003, “
TMJ Anatomy and Animal Models
,”
Journal of Musculoskeletal & Neuronal Interactions
,
3
(
4
), pp.
391
394
. 0003-9969
16.
Strom
,
D.
,
Holm
,
S.
,
Clemensson
,
E.
,
Haraldson
,
T.
, and
Carlsson
,
G. E.
, 1986, “
Gross Anatomy of the Mandibular Joint and Masticatory Muscles in the Domestic Pig (Sus Scrofa)
,”
Arch. Oral Biol.
0003-9969,
31
(
11
), pp.
763
768
.
17.
Parsons
,
J. R.
, and
Black
,
J.
, 1979, “
Mechanical Behavior of Articular Cartilage: Quantitative Changes With Alteration of Ionic Environment
,”
J. Biomech.
0021-9290,
12
(
10
), pp.
765
773
.
18.
Detamore
,
M. S.
, and
Athanasiou
,
K. A.
, 2003, “
Tensile Properties of the Porcine Temporomandibular Joint Disc
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
558
565
.
19.
Woo
,
S. L.
,
Lubock
,
P.
,
Gomez
,
M. A.
,
Jemmott
,
G. F.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
, 1979, “
Large Deformation Nonhomogeneous and Directional Properties of Articular Cartilage in Uniaxial Tension
,”
J. Biomech.
0021-9290,
12
(
6
), pp.
437
446
.
20.
Ferguson
,
S. J.
,
Bryant
,
J. T.
, and
Ito
,
K.
, 2001, “
The Material Properties of the Bovine Acetabular Labrum
,”
J. Orthop. Res.
0736-0266,
19
(
5
), pp.
887
896
.
21.
Allen
,
K. D.
, and
Athanasiou
,
K. A.
, 2005, “
A Surface–Regional and Freeze–Thaw Characterization of the Porcine Temporomandibular Joint Disc
,”
Ann. Biomed. Eng.
0090-6964,
33
(
7
), pp.
951
962
.
22.
Fung
,
Y.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
.
23.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
,
Howell
,
D. S.
, and
Manicourt
,
D. H.
, 1986, “
Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
0736-0266,
4
(
4
), pp.
379
392
.
24.
Elliott
,
D. M.
, and
Setton
,
L. A.
, 2001, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus: Experimental Measurement and Material Model Predictions
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
3
), pp.
256
263
.
25.
Li
,
L. P.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 2003, “
Strain-Rate Dependent Stiffness of Articular Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
2
), pp.
161
168
.
26.
Li
,
L. P.
, and
Herzog
,
W.
, 2004, “
Strain-Rate Dependence of Cartilage Stiffness in Unconfined Compression: The Role of Fibril Reinforcement Versus Tissue Volume Change in Fluid Pressurization
,”
J. Biomech.
0021-9290,
37
(
3
), pp.
375
382
.
27.
Slivka
,
M. A.
,
Leatherbury
,
N. C.
,
Kieswetter
,
K.
, and
Niederauer
,
G. G.
, 2001, “
Porous, Resorbable, Fiber-Reinforced Scaffolds Tailored for Articular Cartilage Repair
,”
Tissue Eng.
1076-3279,
7
(
6
), pp.
767
780
.
28.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
, and
Suh
,
J. K.
, 2001, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: II—Effect of Variable Strain Rates
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
2
), pp.
198
200
.
29.
Singh
,
M.
, and
Detamore
,
M. S.
, 2008, “
Tensile Properties of the Mandibular Condylar Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
1
), pp.
011009
.
30.
Tanaka
,
E.
,
Rodrigo
,
D. P.
,
Miyawaki
,
Y.
,
Lee
,
K.
,
Yamaguchi
,
K.
, and
Tanne
,
K.
, 2000, “
Stress Distribution in the Temporomandibular Joint Affected by Anterior Disc Displacement: A Three-Dimensional Analytic Approach With the Finite-Element Method
,”
J. Oral Rehabil.
0305-182X,
27
(
9
), pp.
754
759
.
31.
Beek
,
M.
, 2001, “
Three-Dimensional Finite Element Analysis of the Cartilaginous Structures in the Human Temporomandibular Joint
,”
J. Dent. Res.
0022-0345,
80
(
10
), pp.
1913
1918
.
32.
Tanaka
,
E.
,
Tanne
,
K.
, and
Sakuda
,
M.
, 1994, “
A Three-Dimensional Finite Element Model of the Mandible Including the TMJ and Its Application to Stress Analysis in the TMJ During Clenching
,”
Med. Eng. Phys.
1350-4533,
16
(
4
), pp.
316
322
.
33.
Bibb
,
C. A.
,
Pullinger
,
A. G.
, and
Baldioceda
,
F.
, 1993, “
Serial Variation in Histological Character of Articular Soft Tissue in Young Human Adult Temporomandibular Joint Condyles
,”
Arch. Oral Biol.
0003-9969,
38
(
4
), pp.
343
352
.
34.
Hansson
,
T.
,
Öberg
,
T.
,
Carlsson
,
G. E.
, and
Kopp
,
S.
, 1977, “
Thickness of the Soft Tissue Layers and the Articular Disk in the Temporomandibular Joint
,”
Acta Odontol. Scand.
0001-6357,
35
(
1
), pp.
77
83
.
35.
Pullinger
,
A. G.
,
Baldioceda
,
F.
, and
Bibb
,
C. A.
, 1990, “
Relationship of TMJ Articular Soft Tissue to Underlying Bone in Young Adult Condyles
,”
J. Dent. Res.
0022-0345,
69
(
8
), pp.
1512
1518
.
36.
Allen
,
K. D.
, and
Athanasiou
,
K. A.
, 2006, “
Viscoelastic Characterization of the Porcine Temporomandibular Joint Disc Under Unconfined Compression
,”
J. Biomech.
0021-9290,
39
(
2
), pp.
312
322
.
37.
Koolstra
,
J. H.
, and
van Eijden
,
T.
, 2005, “
Combined Finite-Element and Rigid-Body Analysis of Human Jaw Joint Dynamics
,”
J. Biomech.
0021-9290,
38
(
12
), pp.
2431
2439
.
38.
García
,
J. J.
, and
Cortés
,
D. H.
, 2007, “
A biphasic Viscohyperelastic Fibril-Reinforced Model for Articular Cartilage: Formulation and Comparison With Experimental Data
,”
J. Biomech.
0021-9290,
40
(
8
), pp.
1737
1744
.
39.
Athanasiou
,
K. A.
,
Rosenwasser
,
M. P.
,
Buckwalter
,
J. A.
,
Malinin
,
T. I.
, and
Mow
,
V. C.
, 1991, “
Interspecies Comparisons of In Situ Intrinsic Mechanical Properties of Distal Femoral Cartilage
,”
J. Orthop. Res.
0736-0266,
9
(
3
), pp.
330
340
.
40.
Cohen
,
B.
,
Chorney
,
G. S.
,
Phillips
,
D. P.
,
Dick
,
H. M.
, and
Mow
,
V. C.
, 1994, “
Compressive Stress-Relaxation Behavior of Bovine Growth Plate May Be Described by the Nonlinear Biphasic Theory
,”
J. Orthop. Res.
0736-0266,
12
(
6
), pp.
804
813
.
41.
Mow
,
V. C.
,
Gibbs
,
M. C.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Athanasiou
,
K. A.
, 1989, “
Biphasic Indentation of Articular Cartilage—II. A Numerical Algorithm and an Experimental Study
,”
J. Biomech.
0021-9290,
22
(
8–9
), pp.
853
861
.
42.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
(
1
), pp.
73
84
.
You do not currently have access to this content.