Diffuse brain injury (DBI) commonly results from blunt impact followed by sudden head rotation, wherein severity is a function of rotational kinematics. A noninvasive in vivo rat model was designed to further investigate this relationship. Due to brain mass differences between rats and humans, rotational acceleration magnitude indicative of rat DBI (350krad/s2) has been estimated as approximately 60 times greater than that of human DBI (6krad/s2). Prior experimental testing attempted to use standard transducers such as linear accelerometers to measure loading kinematics. However, such measurement techniques were intrusive to experimental model operation. Therefore, initial studies using this experimental model obtained rotational displacement data from videographic images and implemented a finite difference differentiation (FDD) method to obtain rotational velocity and acceleration. Unfortunately, this method amplified high-frequency, low-amplitude noise, which interfered with signal magnitude representation. Therefore, a coherent average technique was implemented to improve the measurement of rotational kinematics from videographic images, and its results were compared with those of the previous FDD method. Results demonstrated that the coherent method accurately determined a low-pass filter cutoff frequency specific to pulse characteristics. Furthermore, noise interference and signal attenuation were minimized compared with the FDD technique.

1.
Abel
,
J. M.
,
Gennarelli
,
T. A.
, and
Segawa
,
H.
, 1978, “
Incidence and Severity of Cerebral Concussion in the Rhesus Monkey Following Sagittal Plane Angular Acceleration
,”
22nd Stapp Car Crash Conference
, Ann Arbor, MI, pp.
35
53
.
2.
Gennarelli
,
T. A.
,
Ommaya
,
A. K.
, and
Thibault
,
L. E.
, 1971, “
Comparison of Translational and Rotational Head Motions in Experimental Cerebral Concussion
,”
15th Stapp Car Crash Conference
, Coronado, CA, pp.
797
803
.
3.
Gennarelli
,
T. A.
,
Thibault
,
L. E.
,
Adams
,
J. H.
,
Graham
,
D. I.
,
Thompson
,
C. J.
, and
Marcincin
,
R. P.
, 1982, “
Diffuse Axonal Injury and Traumatic Coma in the Primate
,”
Ann. Neurol.
0364-5134,
12
(
6
), pp.
564
574
.
4.
Hirsch
,
A. E.
,
Ommaya
,
A. K.
, and
Mahone
,
R. H.
, 1968, “
Tolerance of Subhuman Primate Brain to Cerebral Concussion
,” Naval Ship Research and Development Center, Department of Navy, Report No. 2876.
5.
Holbourn
,
A. H. S.
, 1943, “
Mechanics of Head Injuries
,”
Lancet
,
242
, pp.
438
441
. 0140-6736
6.
Margulies
,
S. S.
, and
Thibault
,
L. E.
, 1992, “
A Proposed Tolerance Criterion for Diffuse Axonal Injury in Man
,”
J. Biomech.
0021-9290,
25
(
8
), pp.
917
923
.
7.
Ommaya
,
A. K.
,
Yarnell
,
P.
,
Hirsch
,
A. E.
, and
Harris
,
E. H.
, 1967, “
Scaling of Experimental Data on Cerebral Concussion in Sub-Human Primates to Concussion Threshold for Man
,”
11th Stapp Car Crash Conference
, Anaheim, CA, pp.
73
80
.
8.
Thibault
,
L. E.
, and
Gennarelli
,
T. A.
, 1985, “
Biomechanics of Diffuse Brain Injuries
,”
12th International Conference on Experimental Safety Vehicles
, Oxford, UK, pp.
79
85
.
9.
Unterharnscheidt
,
F. J.
, 1971, “
Translational Versus Rotational Acceleration: Animal Experiments With Measured Input
,”
15th Stapp Car Crash Conference
, San Diego, CA, pp.
767
770
.
10.
Fijalkowski
,
R. J.
,
Stemper
,
B. D.
,
Pintar
,
F. A.
,
Yoganandan
,
N.
,
Crowe
,
M. J.
, and
Gennarelli
,
T. A.
, 2007, “
New Rat Model for Diffuse Brain Injury Using Coronal Plane Angular Acceleration
,”
J. Neurotrauma
,
24
(
8
), pp.
1387
1398
. 0897-7151
11.
Ellingson
,
B. M.
,
Fijalkowski
,
R. J.
,
Pintar
,
F. A.
,
Yoganandan
,
N.
, and
Gennarelli
,
T. A.
, 2005, “
New Mechanism for Inducing Closed Head Injury in the Rat
,”
Biomed. Sci. Instrum.
,
41
, pp.
86
91
. 0067-8856
12.
Fijalkowski
,
R. J.
,
Ellingson
,
B. M.
,
Stemper
,
B. D.
,
Yoganandan
,
N.
,
Gennarelli
,
T. A.
, and
Pintar
,
F. A.
, 2006, “
Interface Parameters of Impact-Induced Mild Traumatic Brain Injury
,”
Biomed. Sci. Instrum.
,
42
, pp.
108
113
. 0067-8856
13.
Challis
,
R. E.
, and
Kitney
,
R. I.
, 1990, “
Biomedical Signal Processing (in Four Parts). Part 1. Time-Domain Methods
,”
Med. Biol. Eng. Comput.
,
28
(
6
), pp.
509
524
. 0140-0118
14.
Kidder
,
S. M.
,
Abuzzahab
,
F. S.
, Jr.
,
Harris
,
G. F.
, and
Johnson
,
J. E.
, 1996, “
A System for the Analysis of Foot and Ankle Kinematics During Gait
,”
IEEE Trans. Rehabil. Eng.
1063-6528,
4
(
1
), pp.
25
32
.
15.
Widmalm
,
S. E.
,
Bae
,
H. E.
,
Djurdjanovic
,
D.
, and
McKay
,
D. C.
, 2006, “
Inaudible Temporomandibular Joint Vibrations
,”
Cranio
,
24
(
3
), pp.
207
212
. 0886-9634
16.
Ismail
,
A. R.
, and
Asfour
,
S. S.
, 1999, “
Discrete Wavelet Transform: A Tool in Smoothing Kinematic Data
,”
J. Biomech.
,
32
(
3
), pp.
317
321
. 0021-9290
17.
Techavipoo
,
U.
, and
Varghese
,
T.
, 2004, “
Wavelet Denoising of Displacement Estimates in Elastography
,”
Ultrasound Med. Biol.
0301-5629,
30
(
4
), pp.
477
491
.
18.
Bay
,
B. K.
, 1995, “
Texture Correlation: A Method for the Measurement of Detailed Strain Distributions Within Trabecular Bone
,”
J. Orthop. Res.
0736-0266,
13
(
2
), pp.
258
267
.
You do not currently have access to this content.