Spine discectomy and fusion is a widely used surgical procedure to correct irreversible degenerative diseases and injuries to the intervertebral disk. The surgical procedure involves the removal of the damage disk material, the decortication of the fusion site, and the placement of the bone graft. Fusion is believed to generate additional stresses in the neighboring disks, which can subsequently lead to new disk degeneration and re-operation. The autologous bone has proven to be the best material for the fusion. However, the autologous bone has three major disadvantages: the high rate of donor site morbidity, the limited and sometimes poor quality of the amounts of bone available, and the extra operative time needed for harvest. For these reasons this study is undertaken to estimate the optimum amount of bone graft needed for a discectomy and correlate it to the change in stress in adjacent levels. A detailed and validated 3D finite element model of the complete human cervical spine (C1-T1) was altered to simulate segmental full and partial discectomies. One full fusion (bone graft occupies about 90% of the vertebral body) and seven partial fusions (bone graft occupies about 10%, 20%, 30%, 40%, 50%, 65%, and 75% of the vertebral body) were simulated at each of the four mid- and lower single levels of the cervical spine and the relationship between the change in stresses in the adjacent levels and the bone graft size (area) was studied. The changes in stress were compared with the previously obtained results of the unfused models. The fused and unfused models were preloaded with a 73.6 N compressive force representing the weight of the head and with a 1.5 Nm physiological moment in flexion, extension, lateral bending, and axial rotation. More than 132 cases were analyzed. The results showed that the necessary amount of bone graft needed for discectomy depends on the cervical disk level to be fused and varies between 30% and 75% of the disk area. The results also suggested that there is a threshold size of the bone graft area, before and/or after which, the long-term effects of the change in stresses in adjacent disks are biomechanically consequential.

1.
Shao
,
Z.
,
Rompe
,
G.
, and
Schiltenwolf
,
M.
, 2002, “
Radiographic Changes in the Lumbar Intervertebral Discs and Lumbar Vertebrae With Age
,”
Spine
0362-2436,
27
, pp.
263
268
.
2.
Panjabi
,
M. M.
,
Dvorak
,
J.
,
Sandler
,
A.
,
Goel
,
V.
, and
White
,
A. A.
, III
, 1998, “
Cervical Spine Kinematics and Clinical Instability
,”
The Cervical Spine
,
3rd ed.
, pp.
53
77
.
3.
The Cervical Research Society Editorial Committee
, 1998,
The Cervical Spine
,
3rd ed.
,
Lippincott-Raven
,
Philadelphia, PA
.
4.
Humzad
,
M. D.
, and
Soames
,
R. W.
, 1988, “
Human Intervertebral Disc: Structure and Function, Review
,”
Anat. Rec.
0003-276X,
220
, pp.
337
356
.
5.
Oda
,
J.
,
Tanaka
,
H.
, and
Tsuzuki
,
N.
, 1988, “
Intervertebral Disc Changes With Aging of Human Cervical Vertebra. From the Neonate to the Eighties
,”
Spine
0362-2436,
13
, pp.
1205
1341
.
6.
Torrens
,
M. J.
, and
Miliaras
,
G.
, 2002, “
Cervical Spondylosis. Part II: Surgical Management
,”
Curr. Orthop.
,
16
, pp.
300
310
. 0268-0890
7.
Iseda
,
T.
,
Goya
,
T.
,
Nakano
,
S.
,
Kodama
,
T.
,
Moriyama
,
T.
, and
Wakisaka
,
S.
, 2001, “
Serial Changes in Signal Intensities of the Adjacent Discs on T2-Weigthed Sagittal Images After Surgical Treatment of Cervical Spondylosis: Anterior Interbody Fusion Versus Expansive Laminoplasty
,”
Acta Neurochir. (Wien)
,
143
, pp.
707
710
. 0001-6268
8.
Teramoto
,
T.
,
Ohmari
,
K.
,
Takatsu
,
T.
,
Inove
,
H.
,
Ishida
,
Y.
, and
Suzuki
,
K.
, 1994, “
Long term Results of Anterior Cervical Spondylosis
,”
Neurosurgery
0148-396X,
35
, pp.
64
68
.
9.
Bernard
,
T. N. J.
,
Whitecloud
,
T. S.
III
, 1987, “
Cervical Spondylotic Myelopathy and Myeloradiculopathy. Anterior Decompression and Stabilization With Autogenous Fibula Strut Graft
,”
Clin. Orthop. Relat. Res.
0009-921X,
221
, pp.
149
160
.
10.
Hilibrand
,
A. S.
,
Yoo
,
J. U.
,
Carlson
,
G. D.
, and
Bohlman
,
H. H.
, 1997, “
The Success of Anterior Cervical Arthrodesis Adjacent to Previous Fusion
,”
Spine
0362-2436,
22
, pp.
1574
1579
.
11.
Ebersold
,
M. J.
,
Pare
,
M. C.
, and
Quast
,
L. M.
, 1995, “
Surgical Treatment for Cervical Spondylotic Myelopathy
,”
J. Neurosurg.
0022-3085,
82
, pp.
745
751
.
12.
Okada
,
K.
,
Shirasaki
,
N.
,
Hayashi
,
H.
,
Oka
,
S.
, and
Hosoya
,
T.
, 1991, “
Treatment of Cervical Spondylotic Myelopathy by Enlargement of the Spinal Canal Anteriorly, Followed by Arthrodesis
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
73
, pp.
352
364
.
13.
Saunders
,
R. L.
,
Bernini
,
P. M.
,
Shirreffs
,
T. G. J.
, and
Reeves
,
A. G.
, 1991, “
Central Corpectomy for Cervical Spondylotic Myelopathy: A Consecutive Series With Long Term Follow-Up Evaluation
,”
J. Neurosurg.
0022-3085,
74
, pp.
163
170
.
14.
Shinomiya
,
K.
,
Okamoto
,
A.
,
Kamikozuru
,
N.
,
Furuya
,
K.
, and
Yamaura
,
I.
, 1993, “
An Analysis of Failures in Primary Cervical Anterior Spinal Cord Decompression And Fusion
,”
J. Spinal Disord.
0895-0385,
6
, pp.
277
288
.
15.
Clements
,
D. H.
, and
O’Leary
,
P. F.
, 1990, “
Anterior Cervical Discectomy and Fusion
,”
Spine
0362-2436,
15
, pp.
1023
1025
.
16.
Gore
,
D. R.
, and
Sepic
,
S. B.
, 1998, “
Anterior Discectomy and Fusion for Painful Cervical Disc Disease: A Report of 50 Patients With an Average Follow Up of 21 Years
,”
Spine
0362-2436,
23
, pp.
2047
2051
.
17.
Gore
,
D. R.
, and
Sepic
,
S. B.
, 1984, “
Anterior Cervical Fusion for Degenerated or Protruded Discs: A Review of One Hundred Forty Six Patients
,”
Spine
0362-2436,
9
, pp.
667
671
.
18.
Profeta
,
G.
,
de Falco
,
R.
,
Ianniciello
,
G.
,
Profeta
,
L.
,
Cigliano
,
A.
, and
Raja
,
I. A.
, 2000, “
Preliminary Experience With Anterior Cervical Microdisectomy and Interbody Titanium Cage Fusion (Novus CT-Ti) in Patients With Cervical Disc Disease
,”
Surg. Neurol.
0090-3019,
53
, pp.
417
26
.
19.
Portnoy
,
H. D.
, 2001, “
Anterior Cervical Discectomy and Fusion
,”
Surg. Neurol.
0090-3019,
56
, pp.
178
180
.
20.
Cloward
,
R. B.
, 1958, “
The Anterior Approach for Removal of Rupture Cervical Discs
,”
J. Neurosurg.
0022-3085,
15
, pp.
602
17
.
21.
Gill
,
K.
, and
Lin
,
P. M.
, 1989,
Lumbar Interbody Fusion
,
Maryland Aspen Pub
,
Rockville
, pp.
3
7
.
22.
Kowalski
,
R. J.
,
Ferrara
,
L. A.
, and
Benzel
,
E. C.
, 2001, “
Biomechanics of Bone Fusion
,”
Neurosurg. Focus
,
10
(
4
), pp.
1
7
. 1092-0684
23.
Closkey
,
R. F.
,
Russell Parsons
,
J.
,
Lee
,
C. K.
,
Blacksin
,
M. F.
, and
Zimmerman
,
M. C.
, 1993, “
Mechanics of Interbody Spinal Fusion: Analysis of Critical Bone Graft Area
,”
Spine
0362-2436,
18
, pp.
1011
1015
.
24.
Yoganandan
,
N.
,
Kumaresan
,
S. C.
,
Voo
,
L.
,
Pintar
,
F. A.
, and
Larson
,
S. J.
, 1996, “
Finite Element Modeling of C4-C6 Cervical Spine Unit
,”
Med. Eng. Phys.
1350-4533,
18
(
7
), pp.
569
574
.
25.
Teo
,
E. C.
,
Paul
,
J. P.
, and
Evans
,
J. H.
, 1994, “
Finite Element Stress Analysis of a Cadaver Second Cervical Vertebra
,”
Med. Biol. Eng. Comput.
0140-0118,
32
, pp.
236
238
.
26.
Maurel
,
N.
,
Lavaste
,
F.
, and
Skalli
,
W.
, 1997, “
A Three-Dimensional Parameterized Finite Element Model of the Lower Cervical Spine, Study of the Influence of the Posterior Articular Facets
,”
J. Biomech.
0021-9290,
30
, pp.
921
931
.
27.
Goel
,
V. K.
and
Clausen
,
J. D.
, 1998, “
Prediction of Load Sharing Among Spinal Components of a C5-C6 Motion Segment Using the Finite Element Approach
,”
Spine
0362-2436,
23
(
6
), pp.
684
691
.
28.
Brolin
,
K.
, and
Halldin
,
P.
, 2004, “
Development of a Finite Element Model of the Upper Cervical Spine and a Parameter Study of Ligament Characteristics
,”
Spine
0362-2436,
29
(
4
), pp.
376
385
.
29.
Clausen
,
J.
,
Goel
,
V. K.
,
Traynelis
,
V. C.
, and
Wilder
,
D. G.
, 1996, “
Cervical Spine Biomechanical Investigation Using an Experimentally Validated FE Model of C5-C6 Motion Segment
,”
Transaction of 42nd Annual Meeting, Orthopaedic Research Society
, Atlanta, GA, Feb. 18–22, p.
657
.
30.
Bozic
,
K. J.
,
Keyak
,
J. H.
,
Skinner
,
H. B.
,
Bueff
,
H. U.
, and
Bradford
,
D. S.
, 1994, “
Three-Dimensional Finite Element Modeling of a Cervical Vertebra: An Investigation of Burst Fracture Mechanism
,”
J. Spinal Disord.
0895-0385,
7
, pp.
102
110
.
31.
Bono
,
C. M.
,
Faizan
,
A.
,
Goel
,
V. K.
, and
Garfin
,
S. R.
, 2006, “
Finite Element Analysis of Motion With Solid Cervical Fusion: Implications on Interpreting Flexion-Extension Radiographs
,”
52nd Annual Meeting, Orthopedic Research Society
, Chicago, IL, Mar. 19–22.
32.
Bono
,
C. M.
,
Khandha
,
A.
,
Vadapalli
,
S.
,
Holekamp
,
S.
,
Goel
,
V. K.
, and
Garfin
,
S. R.
, 2007, “
Residual Sagittal Motion After Lumbar Fusion—A Finite Element Analysis With Implications on Radiographic Flexion-Extension Criteria
,”
Spine
0362-2436,
32
(
4
), pp.
417
422
.
33.
Goel
,
V. K.
,
Panjabi
,
M. M.
,
Patwardhan
,
A. G.
,
Dooris
,
A. P.
, and
Serhan
,
H.
, 2006, “
Test Protocols for Spinal Implants
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
88
, pp.
103
109
.
34.
Kumaresan
,
S. C.
, 1997, “
Clinical Studies of the Human Cervical Spine Using Finite Element Modeling
,” Ph.D. thesis, Marquette University, Milwaukee, WI.
35.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
, 1997, “
Finite Element Analysis of Anterior Cervical Spine Interbody Fusion
,”
Biomed. Mater. Eng.
0959-2989,
7
(
4
), pp.
221
230
.
36.
Nataragan
,
R. N.
,
Chen
,
B. H.
,
An
,
H. S.
, and
Anderson
,
G. B. J.
, 1999, “
Biomechanical Analysis of Cervical Discectomy and Fusion Using a Three Segment Model
,”
23rd Annual Meeting of the American Society of Biomechanics
, Pittsburgh, PA.
37.
Chen
,
C. S.
,
Cheng
,
C. K.
,
Liu
,
C. L.
, and
Lo
,
W. H.
, 2001a, “
Stress Analysis of the Disc Adjacent to Interbody Fusion in Lumbar Spine
,”
Med. Eng. Phys.
1350-4533,
23
, pp.
485
493
.
38.
Natarajan
,
R. N.
,
Chen
,
B. H.
,
An
,
H. S.
, and
Andersson
,
G. B.
, 2000, “
Anterior Cervical Fusion: A Finite Element Model Study on Motion Segment Stability Including the Effect of Osteoporosis
,”
Spine
0362-2436,
25
(
8
), pp.
955
961
.
39.
Chen
,
B. H.
,
Natarajan
,
R. N.
,
An
,
H. S.
, and
Anderson
,
G. B.
, 2001, “
Investigated the Anterior and Comparison of Biomechanical Response to Surgical Procedures Used for Cervical Radiculopathy: Posterior Keyhole Foraminotomy Versus Anterior Foraminotomy and Discectomy Versus Anterior Discectomy With Fusion
,”
J. Spinal Disord.
0895-0385,
14
(
1
), pp.
17
20
.
40.
Ha
,
S. K.
, 2006, “
Finite Element Modeling of Multi-Level Cervical Spinal Segments (C3-C6) and Biomechanical Analysis of an Elastomer-Type Prosthetic Disc
,”
Med. Eng. Phys.
1350-4533,
28
(
6
), pp.
534
541
.
41.
Yoganandan
,
N.
,
Kumaresan
,
S.
, and
Pintar
,
F. A.
, 2001, “
Biomechanics of the Cervical Spine Part 2. Cervical Spine Soft Tissue Responses and Biomechanical Modeling
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
16
(
1
), pp.
1
27
.
42.
Liu
,
Y. K.
,
Krieger
,
K. W.
,
Njus
,
G.
,
Ueno
,
K.
,
Connors
,
M. P.
,
Wakano
,
K.
, and
Thies
,
D.
, 1982, “
Cervical Spine Stiffness and Geometry of the Young Human Male
,” Air Force Medical Research Laboratory, Ohio, Report No. AFAMRL-TR-80-138.
43.
Sadegh
,
A.
and
Tchako
,
A.
, 2000, “
Vertebral Stress of a Cervical Spine Model Under Dynamic Load
,”
Technol. Health Care
0928-7329,
8
(
2
), pp
163
154
.
44.
Yoganandan
,
N.
,
Myklebust
,
J. B.
,
Ray
,
G.
, and
Sances
,
A.
, Jr.
, 1987, “
Mathematical and Finite Element Analysis of Spine Injuries
,”
Crit. Rev. Biomed. Eng.
0278-940X,
15
(
1
), pp.
29
93
.
45.
Shirazi-Adl
,
A.
,
Ahmed
,
A. M.
, and
Shrivasta
,
S. C.
, 1986, “
A Finite Element Study of a Lumber Motion Segment Subjected to Pure Sagittal Plane Moments
,”
J. Biomech.
0021-9290,
19
(
4
), pp.
331
350
.
46.
de Jager
,
M.
,
Sauren
,
A.
,
Thunnissen
,
J.
, and
Wismans
,
J.
, 1994, “
A Three-Dimensional Head-Neck Model: Validation for Frontal and Lateral Impacts
,” Society of Automotive Engineers, SAE Paper No. 942211.
47.
Grossheim
,
L.
, 1989, “
Morphology of the Human Cervical Spine
,” MS thesis, Marquette University, Milwaukee, WI.
48.
Pintar
,
F. A.
, 1986, “
Biomechanics of Spine Elements
,” Ph.D. thesis, Marquette University, Milwauke, WI.
49.
1999,
ANSYS User Manual, Version 5.6
,
Swanson Analysis Systems, Inc
,
Houston, PA
.
50.
Tchako
,
A.
, 2005, “
Sport Injury Biomechanics and Stress Changes in Adjacent Intervertebral Discs After Partial Discectomies and Fusion of the Cervical Spine
,” Ph.D. thesis, The City University of New York, New York.
51.
Tchako
,
A.
, and
Sadegh
,
A.
, 2009, “
A Cervical Spine Model to Predict Injury Scenarios and Clinical Instability
,” Journal of Sport Biomechanics, 8(1), pp. 78–95.
52.
Moroney
,
S. P.
,
Schultz
,
A. B.
,
Miller
,
J. A.
, and
Anderson
,
G. B.
, 1988, “
Load Displacement Properties of Lower Cervical Spine Motion Segments
,”
J. Biomech.
0021-9290,
21
, pp.
769
779
.
53.
Goel
,
V. K.
, and
Clausen
,
J. D.
, 1998, “
Prediction of Load Sharing Among Spinal Components of a C5-C6 Motion Segment Using the Finite Element Approach
,”
Spine
0362-2436,
23
, pp.
684
691
.
54.
Shea
,
M.
,
Edwards
,
W. T.
,
White
,
A. A.
, and
Hayes
,
W. C.
, 1991, “
Variations of Stiffness and Strength Along the Human Cervical Spine
,”
J. Biomech.
0021-9290,
24
(
2
) pp.
95
107
.
55.
Panjabi
,
M. M.
,
Summers
,
D. J.
,
Pelker
,
R. R.
,
Viedeman
,
T.
,
Friedlander
,
G. E.
, and
Southwick
,
W. O.
, 1986, “
Three Dimensional Load-Displacement Curves Due to Forces on the Cervical Spine
,”
J. Orthop.
,
4
, pp.
152
161
.
56.
White
,
A. A.
, and
Panjabi
,
M. M.
, 1990,
Clinical Biomechanics of the Spine
,”
2nd ed.
,
JB Lippincott
,
Philadelphia, PA
, p.
321
.
57.
Fuller
,
D. A.
,
Kirkpatrick
,
J. S.
,
Emery
,
S. E.
,
Wiber
,
R. G.
, and
Davy
,
D. T.
, 1998, “
A Kinematic Study of the Cervical Spine Before and After Segmental Arthrodesis
,”
Spine
0362-2436,
23
, pp.
1649
1656
.
58.
Smith
,
G. W.
, and
Robinson
,
R. A.
, 1958, “
The Treatment of Certain Cervical Spine Disorders by Anterior Removal of the Intervertebral Disc and Interbody Fusion
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
40
, pp.
607
624
.
59.
Adams
,
M. A.
, and
Huton
,
W. C.
, 1988, “
Mechanics of the Intervertebral Disc
,”
The Biology of Intervertebral Disc
,
P.
Ghosh
, ed.,
CRC Press Inc.
,
Florida
, Vol.
2
.
60.
Gercek
,
E.
,
Arlet
,
V.
,
Delisle
,
J.
, and
Marchesi
,
D.
, 2003, “
Subsidence of Stand-Alone Cervical Cages in Anterior Interbody Fusion: Warning
,”
J. Neurosurg.
0022-3085,
12
(
5
), pp.
513
516
.
61.
Cowin
,
S. C.
, 1986, “
Wolff’s Law of Trabecular Architecture at Remodeling Equilibrium
,”
ASME J. Biomech. Eng.
0148-0731,
108
(
1
), pp.
83
88
.
62.
Cowin
,
S. C.
,
Sadegh
,
M. A.
, and
Luo
,
G. M.
, 1992 “
An Evolutionary Wolff’s Law for Trabecular Architecture
,”
ASME J. Biomech. Eng.
0148-0731,
114
(
1
), pp.
129
136
.
63.
Kumar
,
A.
,
Kozak
,
J. A.
,
Doherty
,
B. J.
, and
Dickson
,
J. H.
, 1993, “
Interspace Distraction and Graft Subsidence After Anterior Lumbar Fusion With Femoral Strut Allograft
,”
Spine
0362-2436,
18
, pp.
2393
2400
.
64.
Patel
,
S. S.
,
Timon
,
S. J.
,
Dawson
,
E. G.
,
Wang
,
J. C.
, 2002, “
Anterior Lumbar Discectomy and Fusion Using Femoral Ring Allografts
,”
American Academy of Orthopaedic Surgeons
, Dallas, TX, Feb. 13–17.
65.
An
,
H. S.
,
Xu
,
R.
,
Lim
,
T. H.
,
McGrady
,
L.
, and
Wilson
,
C.
, 1994, “
Prediction of Bone Graft Strength Using Dual-Energy Radiographic Absorptiometry
,”
Spine
0362-2436,
19
(
20
), pp.
2358
2363
.
66.
Epstein
,
N. E.
, 1998, “
Evaluation and Treatment of Clinical Instability Associated With Pseudarthrosis After Anterior Cervical Surgery for Ossification of the Posterior Longitudinal Ligament
,”
Surg. Neurol.
0090-3019,
49
, pp.
246
252
.
67.
Caspar
,
W.
, and
Pitzen
,
T.
, 1999, “
Anterior Cervical Fusion and Trapezoidal Plate Stabilization for Re-Do Surgery
,”
Surg. Neurol.
0090-3019,
52
, pp.
345
352
.
68.
Wirth
,
F. P.
,
Dowd
,
G. C.
,
Sanders
,
H. F.
, and
Wirth
,
C.
, 2000, “
Cervical Discectomy: A Prospective Analysis of Three Operative Techniques
,”
Surg. Neurol.
0090-3019,
53
, pp.
340
348
.
69.
Martins
,
A.
, 1976, “
Anterior Cervical Discectomy With and Without Interbody Bone Graft
,”
J. Neurosurg.
0022-3085,
44
, pp.
290
295
.
70.
Dowd
,
G. C.
, and
Wirth
,
F. P.
, 1999, “
Anterior Cervical Discectomy: Is Fusion Necessary?
J. Neurosurg.
0022-3085,
90
, pp.
8
12
.
71.
Flynn
,
T. B.
, 1982, “
Neurologic Complications of Anterior Cervical Interbody Fusion
,”
Spine
0362-2436,
7
, pp.
536
539
.
72.
Pilitis
,
J. G.
,
Lucas
,
D. R.
, and
Rengachary
,
S. R.
, 2002, “
Bone Healing and Spinal Fusion
,”
Neurosurg. Focus
,
13
(
6
). 1092-0684
73.
Goel
,
V. K.
,
Park
,
H.
, and
Kong
,
W.
, 1994, “
Investigation of Vibration Characteristics of the Ligamentous Lumbar Spine Using the Finite Element Approach
,”
ASME J. Biomech. Eng.
0148-0731,
116
(
4
), pp.
377
383
.
74.
Van Mameran
,
H.
,
Sanches
,
H.
, and
Beursgens
,
J.
, 1992, “
Cervical Spine Motion in the Sagittal Plane. II. Position of Segmental Averaged Instantaneous Centers of Rotation—A Cineradiographic Study
,”
Spine
0362-2436,
17
, pp.
467
474
.
75.
Lotz
,
J. C.
,
Hsieh
,
A. H.
,
Walsh
,
A. L.
,
Palmer
,
E. I.
, and
Chin
,
J. R.
, 2002, “
Mechanobiology of the Intervertebral Disc
,”
Biochem. Soc. Trans.
0300-5127,
30
(
6
), pp.
853
858
.
76.
Barley
,
R. W.
, and
Badgley
,
C. E.
, 1960, “
Stabilization of the Cervical Spine by Anterior Fusion
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
42
, pp.
365
394
.
77.
Tchako
,
A.
, and
Sadegh
,
A.
, 2002, “
Stress Changes in Intervertebral Discs of the Cervical Spine After Arthrodesis
,”
Bioengineering Division, Proceedings of the International Mech. Engr. Exposition
, BED/ASME, (IMECE), New Orleans, Nov.
78.
Tchako
,
A.
, and
Sadegh
,
A.
, 2001, “
Instability Analysis of a Cervical Spine Model Under Flexion and Compression Loading
,”
Bioengineering Division, Proceedings of the International Mechanical Engineering Congress and Exposition
, BED/ASME, New York, Nov.
You do not currently have access to this content.