Aseptic loosening from polyethylene debris is the leading cause of failure for metal-on-polyethylene hip implants. The accumulation of wear debris can lead to osteolysis, the degradation of bone surrounding the implant components. In the present study, a parametric three-dimensional finite element model of an uncemented total hip replacement prosthesis was constructed and implanted into a femur model constructed from computed tomography (CT) scan data. Design optimization was performed considering volumetric wear as an objective function using a computational model validated in a previous study through in vitro wear assessment. Constraints were used to maintain the physiological range of motion of wear-optimum designs. Loading conditions for both walking and stair climbing were considered in the analysis. In addition, modification of the acetabular liner surface nodes was performed in discrete intervals to reflect the actual wear and creep damage occurring on the liner surface. Stair climbing was found to produce 49% higher volumetric wear than walking. Using a sensitivity analysis, it was found that the objective function sensitivity to the chosen design variables was identical for both walking and stair climbing. The greatest reduction in volumetric wear achieved while maintaining a physiological range of motion was 16%. It was found that including nodal modification in the sensitivity analysis produced little or no difference in the sensitivity analysis results due to the linear nature of volumetric wear progression. Thus, nodal modification was not used in optimization. An increase in the maximum contact pressure was observed for all wear-optimized designs, and an increase in head-liner penetration was found to be related to a reduction in volumetric wear.

1.
Kurtz
,
W. D.
,
Lau
,
E.
,
Zhao
,
K.
,
Mowat
,
F.
,
Ont
,
K.
, and
Halpern
,
M.
, 2006, “
The Future Burden of Hip and Knee Revisions: US Projections From 2005 to 2030
,”
73rd Annual Meeting of the American Academy of Orthopaedic Surgeons
, Chicago, IL.
2.
Sargeant
,
A.
, and
Goswami
,
T.
, 2006, “
Hip Implants: Paper V. Physiological Effects
,”
Mater. Des.
,
27
(
4
), pp.
287
07
. 0264-1275
3.
Wolff
,
J.
, 1892,
Das Gesetz der Transformation der Knochen
,
A. Hirschwald
,
Berlin
.
4.
Huiskes
,
R.
, and
Boeklagen
,
R.
, 1989, “
Mathematical Shape Optimization of Hip Prosthesis Design
,”
J. Biomech.
0021-9290,
22
, pp.
793
804
.
5.
Yoon
,
S. Y.
,
Jang
,
G. H.
, and
Kim
,
Y. Y.
, 1989, “
Shape Optimal Design of the Stem of a Cemented Hip Prosthesis to Minimize Stress Concentration in the Cement Layer
,”
J. Biomech.
0021-9290,
22
, pp.
1279
1284
.
6.
Katoozian
,
H.
, and
Davy
,
D. T.
, 2000, “
Effects of Loading Condition and Objective Function on Three-Dimensional Shape Optimization of Femoral Components of Hip Endoprostheses
,”
Med. Eng. Phys.
1350-4533,
22
, pp.
243
251
.
7.
Katoozian
,
H.
,
Davy
,
D. T.
,
Arshi
,
A.
, and
Saadati
,
U.
, 2001, “
Material Optimization of Femoral Component of Total Hip Prosthesis Using Fiber Reinforced Polymeric Composites
,”
Med. Eng. Phys.
1350-4533,
23
, pp.
503
509
.
8.
Gross
,
S.
, and
Abel
,
E. W.
, 2001, “
A Finite Element Analysis of Hollow Stemmed Hip Prostheses as a Means of Reducing Stress Shielding of the Femur
,”
J. Biomech.
0021-9290,
34
, pp.
995
1003
.
9.
Kowalczyk
,
P.
, 2001, “
Design Optimization of Cementless Femoral Hip Prostheses Using Finite Element Analysis
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
396
402
.
10.
Fernandes
,
P. R.
,
Folgado
,
J.
, and
Ruben
,
R. B.
, 2004, “
Shape Optimization of a Cementless Hip Stem for a Minimum of Interface Stress and Displacement
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
7
, pp.
51
61
.
11.
Ruben
,
R. B.
,
Folgado
,
J.
, and
Fernandes
,
P. R.
, 2007, “
Three-Dimensional Shape Optimization of Hip Prostheses Using a Multicriteria Formulation
,”
Struct. Multidiscip. Optim.
1615-147X,
34
(
3
), pp.
261
275
.
12.
Matsoukas
,
G.
,
Kim
,
I. Y.
, and
Willing
,
R.
, 2007, “
Total Hip Wear Assessment: A Comparison Between Computational and In Vitro Wear Assessment Techniques Using ISO 14242 Loading and Kinematics
,”
ASME J. Biomech. Eng.
In Press.
13.
Harris
,
W. H.
, 1995, “
The Problem is Osteolysis
,”
Clin. Orthop. Relat. Res.
,
311
, pp.
46
53
. 0009-921X
14.
Dumbleton
,
J. H.
,
Manley
,
M. T.
, and
Edidin
,
A. A.
, 2002, “
A Literature Review of the Association Between Wear Rate and Osteolysis in Total Hip Arthroplasty
,”
J. Arthroplasty
,
17
(
5
), pp.
649
661
. 0883-5403
15.
Shanbhag
,
A. S.
,
Sethi
,
M. K.
, and
Rubash
,
H. E.
, 2007, “
Biological Response to Wear Debris: Cellular Interaction Causing Osteolysis
,”
The Adult Hip
,
J. J.
Callaghan
,
A. G.
Rosenberg
, and
H. E.
Rubash
, eds.,
Lippincott Williams and Wilkins
,
Philadelphia, PA
, Vol.
1
, pp.
286
299
.
16.
Lundberg
,
H. J.
,
Pedersen
,
D. R.
,
Baer
,
T. E.
,
Muste
,
M.
,
Callaghan
,
J. J.
, and
Brown
,
T. D.
, 2007, “
Effects of Implant Design Parameters on Fluid Convection, Potentiating Third-Body Debris Ingress Into the Bearing Surfaces During THA Impingement/Subluxation
,”
J. Biomech.
,
40
(
8
), pp.
1676
1685
. 0021-9290
17.
Wooley
,
P. H.
, and
Schwarz
,
E. M.
, 2004, “
Aseptic Loosening
,”
Gene Ther.
,
11
, pp.
402
407
. 0969-7128
18.
Arora
,
J. S.
, 2004,
Introduction to Optimum Design
,
2nd ed.
,
Elsevier Academic
,
New York
.
19.
Viceconti
,
M.
,
Doblare
,
M.
,
Cerrolaza
,
M.
, and
Rodriguez
,
H.
, 2003, “
The Living Human Project
,”
International Congress on Computational Bioengineering
, Zaragoza, Spain.
20.
Kuiper
,
J. H.
, and
Huiskes
,
R.
, 1996, “
Friction and Stem Stiffness Affect Dynamic Interface Motion in Total Hip Replacement
,”
J. Orthop. Res.
0736-0266,
14
, pp.
36
43
.
21.
Bergmann
,
G.
, 1998, “
Hip98 Compact Disc—Loading of the Hip Joint
.”
22.
Graichen
,
F.
,
Bergmann
,
G.
, and
Rohlmann
,
A.
, 1999, “
Hip Endoprosthesis for In Vivo Measurement of Joint Force and Temperature
,”
J. Biomech.
0021-9290,
32
, pp.
1113
1117
.
23.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
, 2001, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
0021-9290,
34
, pp.
859
871
.
24.
Heller
,
M. O.
,
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Durselen
,
L.
,
Pohl
,
M.
,
Claes
,
L.
,
Haas
,
N. P.
, and
Duda
,
G. N.
, 2001, “
Musculo-Skeletal Loading Conditions at the Hip During Walking and Stair Climbing
,”
J. Biomech.
0021-9290,
34
, pp.
883
893
.
25.
Heller
,
M. O.
,
Bergmann
,
G.
,
Kassi
,
J. P.
,
Claes
,
L.
,
Haas
,
N. P.
, and
Duda
,
G. N.
, 2005, “
Determination of Muscle Loading at the Hip Joint for Use in Pre-Clinical Testing
,”
J. Biomech.
0021-9290,
38
, pp.
1155
1163
.
26.
Cripton
,
P. A.
, 1993, “
Compressive Characterization of Ultra High Molecular Weight Polyethylene With Applications to Contact Stress Analysis of Total Knee Replacements
,” MS thesis, Queen’s University, Kingston.
27.
Ashman
,
R. B.
,
Cowin
,
S. C.
,
Van Buskirk
,
W. C.
, and
Rice
,
J. C.
, 1984, “
A Continuous Wave Technique for the Measurement of the Elastic Properties of Cortical Bone
,”
J. Biomech.
0021-9290,
17
, pp.
349
361
.
28.
Ashman
,
R. B.
,
Rho
,
J. Y.
, and
Turner
,
C. H.
, 1989, “
Anatomical Variation of Orthotropic Elastic Moduli of the Proximal Human Tibia
,”
J. Biomech.
0021-9290,
22
, pp.
895
900
.
29.
Archard
,
J. F.
, 1953, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
0021-8979,
24
(
8
), pp.
981
988
.
30.
Archard
,
J. F.
, 1956, “
The Wear of Metals Under Unlubricated Conditions
,”
Proc. R. Soc. London, Ser. A
1364-5021,
236
(
1206
), pp.
397
410
.
31.
Marshek
,
K. M.
, and
Chen
,
H. H.
, 1989, “
Discretization Pressure-Wear Theory for Bodies in Sliding Contact
,”
ASME J. Tribol.
,
111
(
1
), pp.
95
100
. 0742-4787
32.
Maxian
,
T. A.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
, and
Callaghan
,
J. J.
, 1996, “
A Sliding-Distance-Coupled Finite Element Formulation for Polyethylene Wear in Total Hip Arthroplasty
,”
J. Biomech.
0021-9290,
29
(
5
), pp.
687
692
.
33.
Maxian
,
T. A.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
, and
Callaghan
,
J. J.
, 1996, “
Adaptive Finite Element Modeling of Long-Term Polyethylene Wear in Total Hip Arthroplasty
,”
J. Orthop. Res.
0736-0266,
14
(
4
), pp.
668
675
.
34.
Maxian
,
T. A.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
, and
Callaghan
,
J. J.
, 1996, “
3-Dimensional Sliding/Contact Computational Simulation of Total Hip Wear
,”
Clin. Orthop. Relat. Res.
0009-921X,
333
, pp.
41
50
.
35.
Maxian
,
T. A.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
,
McKellop
,
H. A.
,
Lu
,
B.
, and
Callaghan
,
J. J.
, 1997, “
Finite Element Analysis of Acetabular Wear: Validation, Backing and Fixation Effects
,”
Clin. Orthop. Relat. Res.
0009-921X,
344
, pp.
111
117
.
36.
Lee
,
K. Y.
, and
Pienkowski
,
D.
, 1998, “
Compressive Creep Characteristics of Extruded Ultra-High Molecular Weight Polyethylene
,”
J. Biomed. Mater. Res.
0021-9304,
39
(
2
), pp.
261
265
.
37.
Bevill
,
S. L.
,
Bevill
,
G. R.
,
Penmetsa
,
J. R.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
, 2005, “
Finite Element Simulation of Early Creep and Wear in Total Hip Arthroplasty
,”
J. Biomech.
0021-9290,
38
(
12
), pp.
2365
2374
.
38.
Penmetsa
,
J. R.
,
Laz
,
P. J.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
, 2006, “
Influence of Polyethylene Creep Behavior on Wear in Total Hip Arthroplasty
,”
J. Orthop. Res.
0736-0266,
24
(
3
), pp.
422
427
.
39.
Morlock
,
M.
,
Schneider
,
E.
,
Bluhm
,
A.
,
Vollmer
,
M.
,
Bergmann
,
G.
,
Muller
,
V.
, and
Honl
,
M.
, 2001, “
Duration and Frequency of Every Day Activities in Total Hip Patients
,”
J. Biomech.
0021-9290,
34
, pp.
873
881
.
40.
ISO 14242-1, 2002, “
Implants for Surgery—Wear of Total Hip-Joint Prostheses— Part 1: Loading and Displacement Parameters for Wear-Testing Machines and Corresponding Environmental Conditions for Test
.”
You do not currently have access to this content.