The triphasic theory on soft charged hydrated tissues (Lai, W. M., Hou, J. S., and Mow, V. C., 1991, “A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage,” ASME J. Biomech. Eng., 113, pp. 245–258) attributes the swelling propensity of articular cartilage to three different mechanisms: Donnan osmosis, excluded volume effect, and chemical expansion stress. The aim of this study is to evaluate the thermodynamic plausibility of the triphasic theory. The free energy of a sample of articular cartilage subjected to a closed cycle of mechanical and chemical loading is calculated using the triphasic theory. It is shown that the chemical expansion stress term induces an unphysiological generation of free energy during each closed cycle of loading and unloading. As the cycle of loading and unloading can be repeated an indefinite number of times, any amount of free energy can be drawn from a sample of articular cartilage, if the triphasic theory were true. The formulation for the chemical expansion stress as used in the triphasic theory conflicts with the second law of thermodynamics.

1.
Maroudas
,
A.
, and
Bannon
,
C.
, 1981, “
Measurement of Swelling Pressure in Cartilage and Comparison With the Osmotic Pressure of Constituent Proteoglycans
,”
Biorheology
,
18
, pp.
619
632
. 0006-355X
2.
Wilson
,
W.
,
Huyghe
,
J. M.
, and
van Donkelaar
,
C. C.
, 2006, “
A Composition-Based Cartilage Model for the Assessment of Compositional Changes During Cartilage Damage and Adaptation
,”
Osteoarthritis Cartilage
,
14
, pp.
554
560
. 1063-4584
3.
Eisenberg
,
S. R.
, and
Grodzinsky
,
A. J.
, 1985, “
Swelling of Articular Cartilage and Other Connective Tissues: Electromechanical Forces
,”
J. Orthop. Res.
0736-0266,
3
, pp.
148
159
.
4.
Eisenberg
,
S. R.
, and
Grodzinsky
,
A. J.
, 1987, “
The Kinetics of Chemically Induced Nonequilibrium Swelling of Articular Cartilage and Corneal Stroma
,”
ASME J. Biomech. Eng.
,
109
, pp.
79
89
. 0148-0731
5.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
113
, pp.
245
258
.
6.
Hascall
,
V. C.
, and
Hascall
,
G. K.
, 1983, “
Proteoglycans
,”
Cell Biology of Extracellular Matrix
,
1st ed.
,
E. D.
Hay
, ed.,
Plenum
,
New York
, pp.
39
60
.
7.
Muir
,
H.
, 1983, “
Proteoglycans as Organizers of the Extracellular Matrix
,”
Biochem. Soc. Trans.
,
11
, pp.
613
622
. 0300-5127
8.
Jin
,
M. S.
, and
Grodzinsky
,
A. J.
, 2001, “
Effect of Electrostatic Interactions Between Glycosaminoglycans on the Shear Stiffness of Cartilage
,”
Macromolecules
0024-9297,
34
, pp.
8330
8339
.
9.
Lanir
,
Y.
, 1987, “
Biorheology and Fluid Flux in Swelling Tissues. I. Bicomponent Theory for Small Deformations, Including Concentration Effects
,”
Biorheology
,
24
, pp.
173
187
. 0006-355X
10.
Lai
,
W. M.
,
Gu
,
W.
,
Setton
,
L.
, and
Mow
,
V. C.
, 1991, “
Conditional Equivalence of Chemical Loading and Mechanical Loading on Articular Cartilage
,”
Adv. Bioeng.
0360-9960,
20
, pp.
481
484
.
11.
Setton
,
L. A.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1993, “
Swelling Induced Residual Stress and the Mechanism of Curling in Articular Cartilage
,”
Adv. Bioeng.
0360-9960,
26
, pp.
59
62
.
12.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1993, “
Transport of Fluid and Ions Through a Porous-Permeable Charged-Hydrated Tissue, and Streaming Potential Data on Normal Bovine Articular Cartilage
,”
J. Biomech.
0021-9290,
26
(
6
), pp.
709
723
.
13.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1997, “
A Triphasic Analysis of Negative Osmotic Flows Through Charged Hydrated Soft Tissues
,”
J. Biomech.
0021-9290,
30
(
1
), pp.
71
78
.
14.
Simon
,
B. R.
,
Liable
,
J. P.
,
Pflaster
,
D.
,
Yuan
,
Y.
, and
Krag
,
M. H.
, 1996, “
A Poroelastic Finite Element Formulation Including Transport and Swelling in Soft Tissue Structures
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
1
9
.
15.
Lai
,
W. M.
,
Gu
,
W. Y.
, and
Mow
,
V. C.
, 1998, “
On the Conditional Equivalence of Chemical Loading and Mechanical Loading in Articular Cartilage
,”
J. Biomech.
,
31
(
12
), pp.
1181
1185
. 0021-9290
16.
Sun
,
D. N.
,
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1999, “
A Mixed Finite Element Formulation of Triphasic Mechano-Electrochemical Theory for Charged, Hydrated Biological Soft Tissues
,”
Int. J. Numer. Methods Eng.
0029-5981,
45
(
10
), pp.
1375
1402
.
17.
Schugart
,
R. C.
, 2005, “
Mathematical Models and Numerical Methods for Analysis of Mechanical and Chemical Loading in Articular Cartilage
,” Ph.D. thesis, North Carolina State University, Raleigh.
18.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
, 1997, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
0020-7225,
35
, pp.
793
802
.
19.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1998, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-Electrolytes: Passive Transport and Swelling Behaviors
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
169
180
.
20.
Frijns
,
A. J. H.
,
Huyghe
,
J. M.
, and
Janssen
,
J. D.
, 1997, “
A Validation of the Quadriphasic Mixture Theory for Intervertebral Disc Tissue
,”
Int. J. Eng. Sci.
0020-7225,
35
, pp.
1419
1429
.
21.
van Loon
,
R.
,
Huyghe
,
J. M.
,
Wijlaars
,
M. W.
, and
Baaijens
,
F. P. T.
, 2003, “
3d fe Implementation of an Incompressible Quadriphasic Mixture Model
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
, pp.
1243
1258
.
22.
van Meerveld
,
J.
,
Molenaar
,
M. M.
,
Huyghe
,
J. M.
, and
Baaijens
,
F. T. P.
, 2003, “
Analytical Solution of Compression, Free Swelling and Electrical Loading of Saturated Charged Porous Media
,”
Transp. Porous Media
0169-3913,
50
, pp.
111
126
.
23.
Iatridis
,
J. C.
,
Laible
,
J. P.
, and
Krag
,
M. H.
, 2003, “
Influence of Fixed Charge Density Magnitude and Distribution on the Intervertebral Disc: Applications of a Poroelastic and Chemical Electric (Peace) Model
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
12
24
.
24.
Lu
,
X. L.
,
Sun
,
D. D. N.
,
Guo
,
E.
,
Chen
,
F. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 2004, “
Indentation Determined Mechanoelectrochemical Properties and Fixed Charge Density of Articular Cartilage
,”
Ann. Biomed. Eng.
0090-6964,
32
:
370
379
.
25.
Ateshian
,
G. A.
,
Chahine
,
N. O.
,
Basalo
,
I. M.
, and
Hung
,
C. T.
, 2004, “
The Correspondence Between Equilibrium Biphasic Material Properties in Mixture Models of Articular Cartilage
,”
J. Biomech.
0021-9290,
37
, pp.
391
400
.
26.
Wilson
,
W.
,
van Donkelaar
,
C. C.
, and
Huyghe
,
J. M.
, 2005, “
A Comparison Between Mechano-Electrochemical and Biphasic Swelling Theories for Soft Hydrated Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
158
165
.
27.
Haider
,
M. A.
,
Schugart
,
R. C.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2006, “
A Mechano-Chemical Model for the Passive Swelling Response of an Isolated Chondron Under Osmotic Loading
,”
Biomech. Model. Mechanobiol.
,
5
, pp.
160
171
. 1617-7959
You do not currently have access to this content.