Debate regarding the mechanisms of how the eye changes focus (accommodation) and why this ability is lost with age (presbyopia) has recently been rejoined due to the advent of surgical procedures for the correction of presbyopia. Due to inherent confounding factors in both in vivo and in vitro measurement techniques, mechanical modeling of the behavior of the ocular lens in accommodation has been attempted to settle the debate. However, a paucity of reliable mechanical property measurements has proven problematic in the development of a successful mechanical model of accommodation. Instrumented microindentation was utilized to directly measure the local elastic modulus and dynamic response at various locations in the lens. The young porcine lens exhibits a large modulus gradient with the highest modulus appearing at the center of the nucleus and exponentially decreasing with distance. The loss tangent was significantly higher in the decapsulated lens and the force waveform amplitude decreased significantly upon removal of the lens capsule. The findings indicate that localized measurements of the lens’ mechanical properties are necessary to achieve accurate quantitative parameters suitable for mechanical modeling efforts. The results also indicate that the lens behaves as a crosslinked gel rather than as a collection of individual arched fiber cells.

1.
von Helmholtz
,
H.
, 1855, “
Uber die akkommodation des auges
,”
Arch. Ophthalmol.
,
1
, pp.
1
74
. 0003-9950
2.
Gullstrand
,
A.
, 1924,
Helmholtz’s Treatise on Physiological Optics
,
3rd ed.
,
Optical Society of America
, Translated from German in 1909.
3.
Tscherning
,
M.
, 1904,
Physiological Optics
,
Keystone
,
Philadelphia, PA
.
4.
Schachar
,
R.
,
Black
,
T.
,
Kash
,
R.
,
Cudmore
,
D.
, and
Schanzlin
,
D.
, 1995, “
The Mechanism of Accommodation and Presbyopia in the Primate
,”
Ann. Ophthalmol.
,
27
, pp.
58
67
. 0003-4886
5.
Kessler
,
J.
, 1964, “
Experiments in Refilling the Lens
,”
Arch. Ophthalmol. (Chicago)
,
71
(
1
), pp.
412
417
. 0003-9950
6.
Parel
,
J.
,
Gelender
,
H.
,
Trefers
,
W.
, and
Norton
,
E.
, 1986, “
Phaco-Ersatz: Cataract Surgery Designed to Preserve Accommodation
,”
Graefe’s Arch. Clin. Exp. Ophthalmol.
,
224
(
2
), pp.
165
173
. 0721-832X
7.
Fisher
,
R.
, 1971, “
The Elastic Constants of the Human Lens
,”
J. Physiol. (London)
,
212
(
1
), pp.
147
180
. 0022-3751
8.
Burd
,
H.
,
Wilde
,
G.
, and
Judge
,
S.
, 2006, “
Can Reliable Values of Young’s Modulus Be Deduced From Fisher’s (1971) Spinning Lens Measurements?
Vision Res.
,
46
(
8–9
), pp.
1346
1360
. 0042-6989
9.
Weeber
,
H.
,
Eckert
,
G.
,
Soergel
,
F.
,
Meyer
,
C.
,
Pechhold
,
W.
, and
van der Heijde
,
R.
, 2005, “
Dynamic Mechanical Properties of Human Lenses
,”
Exp. Eye Res.
,
80
(
3
), pp.
425
434
. 0014-4835
10.
van Alphen
,
G.
, and
Graebel
,
W.
, 1991, “
Elasticity of Tissues Involved in Accommodation
,”
Vision Res.
,
31
, pp.
1417
1438
. 0042-6989
11.
Ravi
,
N.
,
Wan
,
K.
,
Swindle
,
K.
,
Hamilton
,
P.
, and
Duan
,
G.
, 2006, “
Development of Techniques to Compare Mechanical Properties of Reversible Hydrogels With Spherical, Square Columnar and Ocular Lens Geometry
,”
Polymer
,
47
(
11
), pp.
4203
4209
. 0032-3861
12.
Heys
,
K.
,
Cram
,
S.
, and
Truscott
,
R.
, 2004, “
Massive Increase in the Stiffness of the Human Lens Nucleus With Age: The Basis for Presbyopia?
Mol. Vis
,
10
, pp.
956
963
. 1090-0535
13.
Weeber
,
H.
, and
van der Hiejde
,
R.
, 2007, “
Stiffness Gradient in the Crystalline Lens
,”
Graefe’s Arch. Clin. Exp. Ophthalmol.
,
245
(
9
), pp.
1357
1366
. 0721-832X
14.
Reilly
,
M.
,
Hamilton
,
P.
, and
Ravi
,
N.
, “
Comparison of the Behavior of Natural and Refilled Porcine Lenses in a Robotic Lens Stretcher
,”
Exp. Eye Res.
, to be published. 0014-4835
15.
Weeber
,
H.
, and
van der Heijde
,
R.
, 2007, “
On the Relationship Between Lens Stiffness and Accommodative Amplitude
,”
Exp. Eye Res.
,
85
(
5
), pp.
602
607
. 0014-4835
16.
Schachar
,
R.
, and
Pierscionek
,
B.
, 2007, “
Lens Hardness Not Related to the Age-Related Decline of Accommodative Amplitude
,”
Mol. Vis
,
13
, pp.
1010
1011
. 1090-0535
17.
Ravi
,
N.
,
Wan
,
K.
,
Swindle
,
K.
,
Hamilton
,
P.
, and
Duan
,
G.
, 2006, “
Development of Techniques to Compare Mechanical Properties of Reversible Hydrogels With Spherical, Square Columnar, and Ocular Lens Geometry
,”
Polymer
,
47
(
11
), pp.
4203
4209
. 0032-3861
18.
Burd
,
H.
,
Judge
,
S.
, and
Cross
,
J.
, 2002, “
Numerical Modelling of the Accommodating Lens
,”
Vision Res.
0042-6989,
42
, pp.
2235
2251
.
19.
Schachar
,
R.
, and
Bax
,
A.
, 2001, “
Mechanism of Human Accommodation as Analyzed by Nonlinear Finite Element Analysis
,”
Compr Ther.
,
27
(
2
), pp.
122
132
. 0098-8243
20.
Hermans
,
E.
,
Dubbelman
,
M.
,
van der Heijde
,
G.
, and
Heethaar
,
R.
, 2006, “
Estimating the External Force Acting on the Human Eye Lens During Accommodation by Finite Element Modelling
,”
Vision Res.
,
46
(
21
), pp.
3642
3650
. 0042-6989
21.
Al-Ghoul
,
K.
,
Nordgren
,
R.
,
Kuszak
,
A.
,
Freel
,
C.
,
Costello
,
M.
, and
Kuszak
,
J.
, 2001, “
Structural Evidence of Human Nuclear Fiber Compaction as a Function of Ageing and Cataractogenesis
,”
Exp. Eye Res.
0014-4835,
72
(
3
), pp.
199
214
.
22.
Kuszak
,
J.
,
Zoltoski
,
R.
, and
Sivertson
,
C.
, 2004, “
Fibre Cell Organization in Crystalline Lenses
,”
Exp. Eye Res.
0014-4835,
78
(
3
), pp.
673
687
.
23.
Reilly
,
M.
,
Perry
,
G.
, and
Ravi
,
N.
, “
An Inexpensive Microindentation Device With Electrical Contact Detection
,”
Rev. Sci. Instrum.
, to be published. 0034-6748
24.
Gabriel
,
C.
,
Sheppard
,
R.
, and
Grant
,
E.
, 1983, “
Dielectric Properties of Ocular Tissues at 37 Degrees C
,”
Phys. Med. Biol.
0031-9155,
28
, pp.
43
49
.
25.
Sneddon
,
I.
, 1965, “
The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile
,”
Int. J. Eng. Sci.
0020-7225,
3
, pp.
47
57
.
26.
Reilly
,
M.
,
Rapp
,
B.
,
Hamilton
,
P.
,
Shen
,
A.
, and
Ravi
,
N.
, 2008, “
Material Characterization of Porcine Lenticular Soluble Proteins
,”
Biomacromolecules
,
9
(
6
), pp.
1519
1526
. 1525-7797
27.
Ferry
,
J.
, 1980,
Viscoelastic Properties of Polymers
,
3rd ed.
,
Wiley
,
New York
.
28.
Krag
,
S.
, and
Andreassen
,
T.
, 1996, “
Biomechanical Measurements of the Porcine Lens Capsule
,”
Exp. Eye Res.
0014-4835,
62
, pp.
253
260
.
29.
Krag
,
S.
, and
Andreassen
,
T.
, 2003, “
Mechanical Properties of the Human Lens Capsule
,”
Prog. Retin Eye Res.
,
22
, pp.
749
767
. 1350-9462
30.
David
,
G.
,
Pedrigi
,
R.
,
Heistand
,
M.
, and
Humphrey
,
J.
, 2007, “
Regional Multiaxial Mechanical Properties of the Porcine Anterior Lens Capsule
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
1
), pp.
97
104
.
31.
Glasser
,
A.
, 2003,
Current Aspects of Accommodation II
,
Kaden
,
Heidelberg, Germany
.
32.
Straub
,
B.
,
Boda
,
J.
,
Kuhn
,
C.
,
Schnoelzer
,
M.
,
Korf
,
U.
,
Kempf
,
T.
,
Spring
,
H.
,
Hatzfeld
,
M.
, and
Franke
,
W.
, 2003, “
A Novel Cell-Cell Junction System: The Cortex Adhaerens Mosaic of Lens Fiber Cells
,”
J. Cell. Sci.
,
116
, pp.
4985
4995
. 0021-9533
33.
Shiels
,
A.
,
King
,
J.
,
Mackay
,
D.
, and
Bassnett
,
S.
, 2007, “
Refractive Defects and Cataracts in Mice Lacking Lens Intrinsic Membrane Protein-2
,”
Invest. Ophthalmol. Visual Sci.
,
48
, pp.
500
508
. 0146-0404
34.
Perng
,
M.
,
Qingjiong
,
Z.
, and
Quinlan
,
R.
, 2007, “
Insights Into the Beaded Filament of the Eye Lens
,”
Exp. Cell Res.
,
313
, pp.
2180
2188
. 0014-4827
35.
Bagchi
,
M.
,
Katar
,
M.
,
Lewis
,
J.
, and
Maisel
,
H.
, 2002, “
Associated Proteins of Lens Adherens Junction
,”
J. Cell. Biochem.
,
86
, pp.
700
703
. 0730-2312
You do not currently have access to this content.