The inhalation of micron-sized aerosols into the lung’s acinar region may be recognized as a possible health risk or a therapeutic tool. In an effort to develop a deeper understanding of the mechanisms responsible for acinar deposition, we have numerically simulated the transport of nondiffusing fine inhaled particles (1μm and 3μm in diameter) in two acinar models of varying complexity: (i) a simple alveolated duct and (ii) a space-filling asymmetrical acinar branching tree following the description of lung structure by Fung (1988, “A Model of the Lung Structure and Its Validation,” J. Appl. Physiol., 64, pp. 2132–2141). Detailed particle trajectories and deposition efficiencies, as well as acinar flow structures, were investigated under different orientations of gravity, for tidal breathing motion in an average human adult. Trajectories and deposition efficiencies inside the alveolated duct are strongly related to gravity orientation. While the motion of larger particles (3μm) is relatively insensitive to convective flows compared with the role of gravitational sedimentation, finer 1μm aerosols may exhibit, in contrast, complex kinematics influenced by the coupling between (i) flow reversal due to oscillatory breathing, (ii) local alveolar flow structure, and (iii) streamline crossing due to gravity. These combined mechanisms may lead to twisting and undulating trajectories in the alveolus over multiple breathing cycles. The extension of our study to a space-filling acinar tree was well suited to investigate the influence of bulk kinematic interaction on aerosol transport between ductal and alveolar flows. We found the existence of intricate trajectories of fine 1μm aerosols spanning over the entire acinar airway network, which cannot be captured by simple alveolar models. In contrast, heavier 3μm aerosols yield trajectories characteristic of gravitational sedimentation, analogous to those observed in the simple alveolated duct. For both particle sizes, however, particle inhalation yields highly nonuniform deposition. While larger particles deposit within a single inhalation phase, finer 1μm particles exhibit much longer residence times spanning multiple breathing cycles. With the ongoing development of more realistic models of the pulmonary acinus, we aim to capture some of the complex mechanisms leading to deposition of inhaled aerosols. Such models may lead to a better understanding toward the optimization of pulmonary drug delivery to target specific regions of the lung.

1.
National Research Council
, 1979, “
Subcommittees on Airborne Particles, Division of Medical Sciences
,”
Airborne Particles
,
University Park Press
,
Baltimore
, pp.
107
146
.
2.
Heyder
,
J.
,
Gebhart
,
J.
, and
Scheuch
,
G.
, 1985, “
Interaction of Diffusional and Gravitational Particle Transport in Aerosols
,”
Aerosol Sci. Technol.
,
4
, pp.
315
326
. 0278-6826
3.
Wilson
,
R.
, and
Spengler
,
J. D.
, 1996,
Particles in Our Air: Concentration and Health Effects
,
Harvard University Press
,
Cambridge, MA
.
4.
Moren
,
F.
,
Dolovich
,
M. B.
,
Newhouse
,
M. T.
, and
Newman
,
S. P.
, 1993,
Aerosols in Medicine: Principles, Diagnosis, and Therapy
,
Elsevier
,
Amsterdam
.
5.
Thomson
,
P. J.
, 1998, “
Drug Delivery to the Small Airways
,”
Am. J. Respir. Crit. Care Med.
,
157
, pp.
S199
S202
. 1073-449X
6.
Lewis
,
J. F.
,
Ikegami
,
M.
,
Jobe
,
A. H.
, and
Tabor
,
B.
, 1991, “
Aerosolized Surfactant Treatment of Preterm Lambs
,”
J. Appl. Physiol.
,
70
, pp.
869
876
. 0021-8987
7.
Berggren
,
E.
,
Liljedahl
,
M.
,
Winbladh
,
B.
,
Andreasson
,
B.
,
Curstedt
,
T.
,
Robertson
,
B.
, and
Schollin
,
J.
, 2000, “
Pilot Study of Nebulized Surfactant Therapy for Neonatal Respiratory Distress Syndrome
,”
Acta Paediatr.
,
89
, pp.
460
464
. 0803-5253
8.
Janssens
,
H. M.
,
De Jongste
,
J. C.
,
Hop
,
W. C. J.
, and
Tiddens
,
H. A. W. M.
, 2003, “
Extra-Fine Particles Improve Lung Delivery of Inhaled Steroids in Infants
,”
Chest
,
123
, pp.
2083
2088
. 0012-3692
9.
Schuepp
,
K. G.
,
Jauernig
,
J.
,
Janssens
,
H. M.
,
Tiddens
,
H. A. W. M.
,
Straub
,
D. A.
,
Stangl
,
R.
,
Keller
,
M.
, and
Wildhaber
,
J. H.
, 2005, “
In Vitro Determination of the Optimal Particle Size for Nebulized Aerosol Delivery to Infants
,”
J. Aerosol Med. Pulm. Drug Delivery
,
18
, pp.
225
235
.
10.
Finlay
,
W. H.
, 2001,
The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction
,
Academic
,
New York
.
11.
Everard
,
M. L.
, 2006, “
Aerosol Therapy: Regimen and Device Compliance in Daily Practice
,”
Paediatr. Respir. Rev.
,
7
, pp.
S80
S82
.
12.
Cintokai
,
F. F.
, 1974, “
Fluid Flow in a Model Alveolar Sac
,”
J. Appl. Physiol.
,
37
, pp.
249
251
. 0021-8987
13.
Tippe
,
A.
, and
Tsuda
,
A.
, 1999, “
Recirculating Flow in an Expanding Alveolar Model: Experimental Evidence of Flow-Induced Mixing of Aerosols in the Pulmonary Acinus
,”
J. Aerosol Sci.
0021-8502,
31
, pp.
979
986
.
14.
Tsuda
,
A.
,
Otani
,
Y.
, and
Butler
,
J. P.
, 1999, “
Acinar Flow Irreversibility Caused by Perturbations in Reversible Alveolar Wall Motion
,”
J. Appl. Physiol.
,
86
, pp.
977
984
. 0021-8987
15.
Karl
,
A.
,
Henry
,
F. S.
, and
Tsuda
,
A.
, 2004, “
Low-Reynolds Number Viscous Flow in an Alveolated Duct
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
420
429
.
16.
Tsuda
,
A.
,
Rogers
,
R. A.
,
Hydon
,
P. E.
, and
Butler
,
J. P.
, 2002, “
Chaotic Mixing in the Lung
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
, pp.
10173
10178
.
17.
Davidson
,
M. R.
, and
Fitz-Gerald
,
J. M.
, 1972, “
Flow Patterns in Models of Small Airway Units of the Lung
,”
J. Fluid Mech.
0022-1120,
52
, pp.
161
177
.
18.
Tsuda
,
A.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
, 1994, “
Effects of Alveolated Duct Structure on Aerosol Kinetics. II. Gravitational Sedimentation and Inertial Impaction
,”
J. Appl. Physiol.
,
76
, pp.
2510
2516
. 0021-8987
19.
Tsuda
,
A.
,
Henry
,
F. S.
, and
Butler
,
J. P.
, 1995, “
Chaotic Mixing of Alveolated Duct Flow in Rhythmically Expanding Pulmonary Acinus
,”
J. Appl. Physiol.
,
79
, pp.
1055
1063
. 0021-8987
20.
Henry
,
F. S.
,
Butler
,
J. P.
, and
Tsuda
,
A.
, 2002, “
Kinematically Irreversible Acinar Flow: A Departure From Classical Dispersive Aerosol Transport Theories
,”
J. Appl. Physiol.
,
92
, pp.
835
845
. 0021-8987
21.
Haber
,
S.
, and
Tsuda
,
A.
, 1998, “
The Effect of Flow Generated by a Rhythmically Expanding Pulmonary Acinus on Aerosol Dynamics
,”
J. Aerosol Sci.
0021-8502,
29
, pp.
309
322
.
22.
Haber
,
S.
,
Butler
,
J. P.
,
Brenner
,
H.
,
Emanuel
,
I.
, and
Tsuda
,
A.
, 2000, “
Shear Flow Over a Self-Similar Expanding Pulmonary Alveolus During Rhythmical Breathing
,”
J. Fluid Mech.
0022-1120,
405
, pp.
243
268
.
23.
Haber
,
S.
,
Yitzhak
,
D.
, and
Tsuda
,
A.
, 2003, “
Gravitational Deposition in a Rhythmically Expanding and Contracting Alveolus
,”
J. Appl. Physiol.
,
95
, pp.
657
671
. 0021-8987
24.
Sznitman
,
J.
,
Heimsch
,
F.
,
Heimsch
,
T.
,
Rusch
,
D.
, and
Rösgen
,
T.
, 2007, “
Three-Dimensional Convective Alveolar Flow Induced by Rhythmic Breathing Motion of the Pulmonary Acinus
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
658
665
.
25.
Ryan
,
S. F.
,
Dumais
,
C.
, and
Ciannella
,
A.
, 1969, “
The Structure of the Interalveolar Septum of the Mammalian Lung
,”
Anat. Rec.
,
165
, pp.
467
483
. 0003-276X
26.
Mead
,
J.
,
Takishima
,
T.
, and
Leith
,
D.
, 1970, “
Stress Distribution in Lungs: A Model of Pulmonary Elasticity
,”
J. Appl. Physiol.
,
28
, pp.
596
608
. 0021-8987
27.
Reifenrath
,
R.
, 1975, “
The Significance of Alveolar Geometry and Surface Tension in the Respiratory Mechanics of the Lung
,”
Respir. Physiol.
,
24
, pp.
115
137
. 0034-5687
28.
Linhartova
,
A.
,
Caldwell
,
W.
, and
Anderson
,
A. E.
, 1986, “
A Proposed Alveolar Model for Adult Human Lungs: The Regular Dodecahedron
,”
Anat. Rec.
,
214
, pp.
266
272
. 0003-276X
29.
Fung
,
Y. C.
, 1988, “
A Model of the Lung Structure and Its Validation
,”
J. Appl. Physiol.
,
64
, pp.
2132
2141
. 0021-8987
30.
Fung
,
Y. C.
, 1990,
Biomechanics. Motion, Flow, Stress, and Growth
,
Springer-Verlag
,
New York
.
31.
Anafi
,
R. C.
, and
Wilson
,
T. A.
, 2001, “
Airway Stability and Heterogeneity in the Constricted Lung
,”
J. Appl. Physiol.
,
91
, pp.
1185
1192
. 0021-8987
32.
Boatman
,
E. S.
, and
Martin
,
H. B.
, 1963, “
Electron Microscopy of the Alveolar Pores of Kohn
,”
Am. Rev. Respir. Dis.
,
88
, pp.
779
784
. 0003-0805
33.
Haefeli-Bleuer
,
B.
, and
Weibel
,
E. R.
, 1988, “
Morphometry of the Human Pulmonary Acinus
,”
Anat. Rec.
0003-276X,
220
, pp.
401
414
.
34.
Weibel
,
E. R.
,
Sapoval
,
B.
, and
Filoche
,
M.
, 2005, “
Design of the Peripheral Airways for Efficient Gas Exchange
,”
Respir. Physiol. Neurbiol.
,
148
, pp.
3
21
. 1569-9048
35.
Miller
,
W. S.
, 1947,
The Lung
,
2nd ed.
,
Thomas
,
Springfield, IL
.
36.
Malpighi
,
M.
, 1661,
De pulmonibus epistolae II as borelum
,
Bonon
,
Bologna
.
37.
Elze
,
C.
, and
Hennig
,
A.
, 1956, “
Die inspiratorische Vergroesserung von Volumen und Oberflaeche der menschlichen Lunge
,”
Z. Anat. Entwicklungsgesch.
,
119
, pp.
457
469
. 0044-2232
38.
Weibel
,
E. R.
, 1963,
Morphometry of the Human Lung
,
Springer-Verlag
,
Berlin
.
39.
Staub
,
N. C.
, and
Storey
,
W. F.
, 1962, “
Relation Between Morphological and Physiological Events in Lung Studied by Rapid Freezing
,”
J. Appl. Physiol.
,
17
, pp.
381
390
. 0021-8987
40.
Dale
,
P. J.
,
Mathews
,
F. L.
, and
Schroter
,
R. C.
, 1980, “
Finite Element Analysis of Lung Parenchyma
,”
J. Biomech.
0021-9290,
13
, pp.
865
873
.
41.
Denny
,
E.
, and
Schroter
,
R. C.
, 1995, “
The Mechanical Behavior of a Mammalian Lung Alveolar Duct Model
,”
ASME J. Biomech. Eng.
0148-0731,
117
, pp.
254
261
.
42.
Denny
,
E.
, and
Schroter
,
R. C.
, 2000, “
Viscoelastic Behavior of a Lung Alveolar Duct Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
143
151
.
43.
Denny
,
E.
, and
Schroter
,
R. C.
, 2006, “
A Model of Non-Uniform Lung Parenchyma Distortion
,”
J. Biomech.
,
39
, pp.
652
663
. 0021-9290
44.
Hansen
,
J. E.
,
Ampaya
,
E. P.
,
Bryant
,
G. H.
, and
Navin
,
J. J.
, 1975, “
Branching Patterns of Airways and Air Spaces of a Single Human Terminal Bronchiole
,”
J. Appl. Physiol.
,
38
, pp.
983
989
. 0021-8987
45.
Hansen
,
J. E.
, and
Ampaya
,
E. P.
, 1975, “
Human Air Space Shapes, Sizes, Areas, and Volumes
,”
J. Appl. Physiol.
,
38
, pp.
990
995
. 0021-8987
46.
Ardila
,
R.
,
Horie
,
T.
, and
Hildebrandt
,
J.
, 1974, “
Macroscopic Isotropy of Lung Expansion
,”
Respir. Physiol.
0034-5687,
20
, pp.
105
115
.
47.
Gil
,
J.
, and
Weibel
,
E. R.
, 1972, “
Morphological Study of Pressure-Volume Hysteresis in Rat Lungs Fixed by Vascular Perfusion
,”
Respir. Physiol.
0034-5687,
15
, pp.
190
213
.
48.
Gil
,
J.
,
Bachofen
,
H.
,
Gehr
,
P.
, and
Weibel
,
E. R.
, 1979, “
Alveolar Volume-Surface Area Relation in Air- and Saline-Filled Lungs Fixed by Vascular Perfusion
,”
J. Appl. Physiol.
,
47
, pp.
990
1001
. 0021-8987
49.
Miki
,
H.
,
Butler
,
J. P.
,
Rogers
,
R. A.
, and
Lehr
,
J.
, 1993, “
Geometric Hysteresis in Pulmonary Surface-to-Volume Ratio During Tidal Breathing
,”
J. Appl. Physiol.
,
75
, pp.
1630
1636
. 0021-8987
50.
Ferziger
,
J. H.
, and
Peric
,
M.
, 2001,
Computational Methods for Fluid Dynamics
,
3rd ed.
,
Springer-Verlag
,
New York
.
51.
Schiller
,
L.
, and
Neumann
,
A.
, 1933, “
Uber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung
,”
Z. Ver. Dtsch. Ing.
0341-7255,
77
, pp.
318
320
.
52.
Kojic
,
M.
, and
Tsuda
,
A.
, 2004, “
A Simple Model for Gravitational Deposition of Non-Diffusing Particles in Oscillatory Laminar Pipe Flow and Its Application to Small Airways
,”
J. Aerosol Sci.
,
35
, pp.
245
261
. 0021-8502
53.
Darmofal
,
D. L.
, and
Haimes
,
R.
, 1996, “
An Analysis of 3D Particle Path Integration Algorithms
,”
J. Comput. Phys.
,
123
, pp.
182
195
. 0021-9991
54.
Crowe
,
C.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
, 1998,
Multiphase Flows With Droplets and Particles
,
CRC
,
Boca Raton, FL
.
55.
Di Felice
,
R.
, 1994, “
The Voidage Function for Fluid-Particle Interaction Systems
,”
Int. J. Multiphase Flow
0301-9322,
20
, pp.
153
159
.
56.
Darquenne
,
C.
,
Paiva
,
M.
,
West
,
J. B.
, and
Kim Prisk
,
G.
, 1997, “
Effect of Microgravity and Hypergravity on Deposition of 0.5- to 3-μm-Diameter Aerosol in the Human Lung
,”
J. Appl. Physiol.
,
83
, pp.
2029
2036
. 0021-8987
57.
Dailey
,
H. L.
, and
Ghadiali
,
S. N.
, 2007, “
Fluid-Structure Analysis of Microparticle Transport in Deformable Pulmonary Alveoli
,”
J. Aerosol Sci.
,
38
, pp.
269
288
. 0021-8502
58.
Tobak
,
M.
, and
Peake
,
D. J.
, 1982, “
Topology of Three-Dimensional Separated Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
14
, pp.
61
85
.
59.
Shen
,
C.
, and
Floryan
,
J. M.
, 1985, “
Low Reynolds Number Flow Over Cavities
,”
Phys. Fluids
,
28
, pp.
3191
3202
. 1070-6631
60.
Taneda
,
S.
, 1977, “
Visualization of Separating Stokes Flows
,”
J. Phys. Soc. Jpn.
0031-9015,
46
, pp.
1935
1942
.
61.
Higdon
,
J. L.
, 1985, “
Stokes Flow in Arbitrary Two-Dimensional Domains: Shear Flow Over Ridges and Cavities
,”
J. Fluid Mech.
0022-1120,
159
, pp.
195
226
.
62.
Bennett
,
W. D.
,
Brown
,
J. S.
,
Zeman
,
K. L.
,
Hu
,
S. -H.
,
Scheuch
,
G.
, and
Sommerer
,
K.
, 2002, “
Targeting Delivery of Aerosols to Different Lung Regions
,”
J. Aerosol Med. Pulm. Drug Delivery
,
15
, pp.
179
188
.
63.
Sapoval
,
B.
,
Filoche
,
M.
, and
Weibel
,
E. R.
, 2002, “
Smaller is Better—But not Too Small: A Physical Scale for the Design of the Mammalian Pulmonary Acinus
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
, pp.
10411
10416
.
64.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Academic
,
New York
.
65.
Jongh
,
F. H. C.
,
Rinkel
,
M. J. G.
, and
Hoeijmakers
,
H. W. M.
, 2006, “
Aerosol Deposition in the Upper Airways of a Child
,”
J. Aerosol Med. Pulm. Drug Delivery
,
19
, pp.
279
289
.
You do not currently have access to this content.