This paper presents an extension of a recently developed low-dimensional modeling approach for normal human gait to the modeling of asymmetric gait. The asymmetric model is applied to analyze the gait dynamics of a transtibial prosthesis user, specifically the changes in joint torque and joint power costs that occur with variations in sagittal-plane alignment of the prosthesis, mass distribution of the prosthesis, and roll-over shape of the prosthetic foot being used. The model predicts an increase in cost with addition of mass and a more distal location of the mass, as well as the existence of an alignment at which the costs are minimized. The model’s predictions also suggest guidelines for the selection of prosthetic feet and suitable alignments. The results agree with clinical observations and results of other gait studies reported in the literature. The model can be a useful analytical tool for more informed design and selection of prosthetic components, and provides a basis for making the alignment process systematic.

1.
Cavagna
,
G. A.
,
Heglund
,
N. C.
, and
Taylor
,
C. R.
, 1977, “
Mechanical Work in Terrestrial Locomotion: Two Basic Mechanisms for Minimizing Energy Expenditure
,”
Am. J. Physiol.
0002-9513,
235
, pp.
R243
261
.
2.
Lee
,
C. R.
, and
Farley
,
C. T.
, 1998, “
Determinants of the Center of Mass Trajectory in Human Walking and Running
,”
J. Exp. Biol.
0022-0949,
201
(
21
), pp.
2935
2944
.
3.
McGeer
,
T.
, 1993, “
Dynamics and Control of Bipedal Locomotion
,”
J. Theor. Biol.
0022-5193,
166
(
3
), pp.
277
314
.
4.
Garcia
,
M.
,
Chatterjee
,
A.
,
Ruina
,
A.
, and
Coleman
,
M.
, 1998, “
The Simplest Walking Model: Stability, Complexity, and Scaling
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
2
), pp.
281
288
.
5.
Kuo
,
A. D.
, 2002, “
Energetics of Actively Powered Locomotion Using the Simplest Walking Model
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
1
), pp.
113
120
.
6.
Selles
,
R. W.
,
Bussmann
,
J. B. J.
,
Wagenaar
,
R. C.
, and
Stam
,
H. J.
, 2001, “
Comparing Predictive Validity of Four Ballistic Swing Phase Models of Human Walking
,”
J. Biomech.
0021-9290,
34
(
9
),
1171
1175
.
7.
Zmitrewicz
,
R. J.
,
Neptune
,
R. R.
, and
Sasaki
,
K.
, 2006, “
Mechanical Energetic Contributions From Individual Muscles and Elastic Prosthetic Feet During Symmetric Unilateral Transtibial Amputee Walking: A Theoretical Study
,”
J. Biomech.
0021-9290,
40
, pp.
1824
1831
.
8.
Anderson
,
F. C.
, and
Pandy
,
M. G.
, 2003, “
Individual Muscle Contributions to Support in Normal Walking
,”
Gait and Posture
0966-6362,
17
, pp.
159
169
.
9.
Gerritsen
,
K. G.
,
van den Bogert
,
A. J.
,
Hulliger
,
M.
, and
Zernicke
,
R. F.
, 1998, “
Intrinsic Muscle Properties Facilitate Locomotor Control—A Computer Simulation Study
,”
Motor Control
1087-1640,
2
, pp.
206
220
.
10.
Srinivasan
,
S.
,
Raptis
,
I.
, and
Westervelt
,
E. R.
, 2008, “
A Low-Dimensional Sagittal Plane Model for Normal Human Walking
,”
ASME J. Biomech. Eng.
0148-0731,
130
, p.
051017
.
11.
Mattes
,
S. J.
,
Martin
,
P. E.
, and
Royer
,
T. D.
, 2000, “
Walking Symmetry and Energy Cost in Persons with Unilateral Transtibial Amputations: Matching Prosthetic and Intact Limb Inertial Properties
,”
Arch. Phys. Med. Rehabil.
0003-9993,
81
(
5
), pp.
561
568
.
12.
Selles
,
R. W.
,
Korteland
,
S.
,
Van Soest
,
A. J.
,
Bussmann
,
J. B.
, and
Stam
,
H. J.
, 2003, “
Lower-Leg Inertial Properties in Transtibial Amputees and Control Subjects and Their Influence on the Swing Phase During Gait. Archives of Physical Medicine and Rehabilitation
,”
Arch. Phys. Med. Rehabil.
0003-9993,
84
(
4
), pp.
569
577
.
13.
Hafner
,
B. J.
,
Sanders
,
J. E.
,
Czerniecki
,
J.
, and
Fergason
,
J.
, 2002, “
Energy Storage and Return Prostheses: Does Patient Perception Correlate With Biomechanical Analysis?
,”
Clin. Biomech.
0268-0033,
17
(
5
), pp.
325
344
.
14.
Scherer
,
R. F.
,
Dowling
,
J. J.
,
Frost
,
G.
,
Robinson
,
M.
, and
McLean
,
K.
, 1999, “Mechanical and Metabolic Work of Persons with Lower-Extremity Amputations Walking with Titanium and Stainless Steel Prostheses: A Preliminary Study,” J. Prosthet. Orthot., 11(
2
), pp. 38–42.
15.
Schmalz
,
T.
,
Blumentritt
,
S.
, and
Jarasch
,
R.
, 2002, “
Energy Expenditure and Biomechanical Characteristics of Lower Limb Amputee Gait: The Influence of Prosthetic Alignment and Different Prosthetic Components
,”
Gait and Posture
0966-6362,
16
(
3
), pp.
255
263
.
16.
Blumentritt
,
S.
,
Schmalz
,
T.
,
Jarasch
,
R.
, and
Schneider
,
M.
, 1999, “
Effects of Sagittal Plane Prosthetic Alignment on Standing Trans-Tibial Amputee Knee Loads
,”
Prosthet. Orthot Int.
0309-3646,
23
(
3
), pp.
231
238
.
17.
Geil
,
M.
, 2002, “
Variability Among Practitioners in Dynamic Observational Alignment of a Transfemoral Prosthesis
,”
Prosthet. Orthot Int.
0309-3646,
14
, pp.
159
164
.
18.
Zahedi
,
M. S.
,
Spence
,
W. D.
,
Solomonidis
,
S. E.
, and
Paul
,
J. P.
, 1986, “
Alignment of Lower-Limb Prostheses
,”
J. Rehabil. Res. Dev.
0748-7711,
23
, pp.
2
19
.
19.
Hansen
,
A. H.
,
Childress
,
D. S.
, and
Knox
,
E. H.
, 2004, “
Roll-Over Shapes of Human Locomotor Systems: Effects of Walking Speed
,”
Clin. Biomech.
0268-0033,
19
(
4
), pp.
407
414
.
20.
Perry
,
J.
, 1982,
Atlas of Limb Prosthetics: Surgical, Prosthetic, and Rehabilitation Principles
,
2nd ed.
,
Mosby
,
St. Louis
, pp.
359
369
.
21.
22.
Srinivasan
,
S.
, 2007, “
Low-Dimensional Modeling and Analysis of Human Gait with Application to the Gait of Transtibial Prosthesis Users
,” Ph.D. thesis, The Ohio State University, Columbus, OH.
23.
Winter
,
D. A.
, 2005,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
New York
.
24.
Selles
,
R. W.
,
Bussmann
,
J. B.
,
Klip
,
L. M.
,
Speet
,
B.
,
Van Soest
,
A. J.
, and
Stam
,
H. J.
, 2004, “
Adaptations to Mass Perturbations in Transtibial Amputees: Kinetic or Kinematic Invariance?
,”
Arch. Phys. Med. Rehabil.
0003-9993,
85
(
12
), pp.
2046
2052
.
25.
Selles
,
R. W.
,
Bussmann
,
J. B. J.
,
Van Soest
,
A. J. K.
, and
Stam
,
H. J.
, 2004, “
The Effect of Prosthetic Mass Properties on The Gait of Transtibial Amputees: A Mathematical Model
,”
Disabil Rehabil.
0963-8288,
26
(
12
), pp.
694
704
.
26.
Hansen
,
A. H.
, 2002, “
Roll-Over Characteristics of Human Walking With Applications for Artificial Limbs
,” Ph.D. thesis, Northwestern University, Evanston, IL.
27.
Adamczyk
,
P. G.
,
Collins
,
S. H.
, and
Kuo
,
A. D.
, 2006, “
The Advantages of a Rolling Foot in Human Walking
,”
J. Exp. Biol.
0022-0949,
209
, pp.
3953
3963
.
28.
Knox
,
E. H.
, 1996, “
The Role of Prosthetic Feet in Walking
,” Ph.D. thesis, Northwestern University, Evantson, IL.
29.
Blumentritt
,
S.
, 1997, “
A New Biomechanical Method for Determination of Static Prosthetic Alignment
,”
Prosthet. Orthot Int.
0309-3646,
21
(
2
), pp.
107
113
.
30.
Lehmann
,
J. F.
,
Price
,
R.
,
Okumura
,
R.
,
Questad
,
K.
,
de Lateur
,
B. J.
, and
Negretot
,
A.
, 1998, “
Mass and Mass Distribution of Below-Knee Prostheses: Effect on Gait Efficacy and Self-Selected Walking Speed
,”
Arch. Phys. Med. Rehabil.
0003-9993,
79
(
2
), pp.
162
168
.
31.
Browning
,
R. C.
,
Modica
,
J. R.
,
Kram
,
R.
, and
Goswami
,
A.
, 2007, “
The Effects of Adding Mass to the Legs on the Energetics and Biomechanics of Walking
,”
Med. Sci. Sports Exercise
0195-9131,
39
, pp.
515
525
.
32.
Hansen
,
A. H.
,
Meier
,
M. R.
,
Sam
,
M.
,
Childress
,
D. S.
, and
Edwards
,
M. L.
, 2003, “
Alignment of Trans-Tibial Prostheses Based on Roll-Over Shape Principles
,”
Prosthet. Orthot Int.
0309-3646,
27
(
2
), pp.
89
99
.
33.
Hansen
,
A. H.
,
Meier
,
M. R.
,
Sessoms
,
P. H.
, and
Childress
,
D. S.
, 2006, “
The Effects of Prosthetic Foot Roll-Over Shape Arc Length on the Gait of Trans-Tibial Prosthesis Users
,”
Prosthet. Orthot Int.
0309-3646,
30
(
3
), pp.
286
299
.
34.
Donelan
,
J. M.
,
Kram
,
R.
, and
Kuo
,
A. D.
, 2002, “
Mechanical Work for Step-to-Step Transitions is a Major Determinant of the Metabolic Cost of Human Walking
,”
J. Exp. Biol.
0022-0949,
205
, pp.
3717
3727
.
You do not currently have access to this content.