Abdominal aortic aneurysm (AAA) rupture represents a major cardiovascular risk, combining complex vascular mechanisms weakening the abdominal artery wall coupled with hemodynamic forces exerted on the arterial wall. At present, a reliable method to predict AAA rupture is not available. Recent studies have introduced fluid structure interaction (FSI) simulations using isotropic wall properties to map regions of stress concentrations developing in the aneurismal wall as a much better alternative to the current clinical criterion, which is based on the AAA diameter alone. A new anisotropic material model of AAA that closely matches observed biomechanical AAA material properties was applied to FSI simulations of patient-specific AAA geometries in order to develop a more reliable predictor for its risk of rupture. Each patient-specific geometry was studied with and without an intraluminal thrombus (ILT) using two material models—the more commonly used isotropic material model and an anisotropic material model—to delineate the ILT contribution and the dependence of stress distribution developing within the aneurismal wall on the material model employed. Our results clearly indicate larger stress values for the anisotropic material model and a broader range of stress values as compared to the isotropic material, indicating that the latter may underestimate the risk of rupture. While the locations of high and low stresses are consistent in both material models, the differences between the anisotropic and isotropic models become pronounced at large values of strain—a range that becomes critical when the AAA risk of rupture is imminent. As the anisotropic model more closely matches the biomechanical behavior of the AAA wall and resolves directional strength ambiguities, we conclude that it offers a more reliable predictor of AAA risk of rupture.

1.
Lederle
,
F. A.
,
Wilson
,
S. E.
,
Johnson
,
G. R.
,
Reinke
,
D. B.
,
Littooy
,
F. N.
,
Acher
,
C. W.
,
Ballard
,
D. J.
,
Messina
,
L. M.
,
Gordon
,
I. L.
,
Chute
,
E. P.
,
Krupski
,
W. C.
,
Bandyk
,
D.
, and
Vet
,
A. D. M.
, 2002, “
Immediate Repair Compared With Surveillance of Small Abdominal Aortic Aneurysms.
,”
N. Engl. J. Med.
0028-4793,
346
(
19
), pp.
1437
1444
.
2.
Lederle
,
F. A.
,
Johnson
,
G. R.
,
Wilson
,
S. E.
,
Ballard
,
D. J.
,
Jordan
,
W. D.
,
Blebea
,
J.
,
Littooy
,
F. N.
,
Freischlag
,
J. A.
,
Bandyk
,
D.
,
Rapp
,
J. H.
,
Salam
,
A. A.
, and
Invest
,
V. A. C. S.
, 2002, “
Rupture Rate of Large Abdominal Aortic Aneurysms in Patients Refusing or Unfit for Elective Repair
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
287
(
22
), pp.
2968
2972
.
3.
Szilagyi
,
D. E.
,
Smith
,
R. F.
, and
Elliott
,
J. P.
, 1972, “
Clinical Fate of Patient With Asymptomatic Abdominal Aortic Aneurysm and Unfit for Surgical Treatment
,”
Arch. Surg. (Chicago)
0004-0010,
104
(
4
), pp.
600
606
.
4.
Powell
,
J. T.
,
Brady
,
A. R.
,
Brown
,
L. C.
,
Forbes
,
J. F.
,
Fowkes
,
F. G. R.
,
Greenhalgh
,
R. M.
,
Ruckley
,
C. V.
,
Thompson
,
S. G.
, and
Participants
,
U. S. A. T.
, 1998, “
Mortality Results for Randomised Controlled Trial of Early Elective Surgery or Ultrasonographic Surveillance for Small Abdominal Aortic Aneurysms
,”
Lancet
0140-6736,
352
(
9141
), pp.
1649
1655
.
5.
Di Martino
,
E. S.
,
Bohra
,
A.
,
Vande Geest
,
J. P.
,
Gupta
,
N.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
, 2006, “
Biomechanical Properties of Ruptured Versus Electively Repaired Abdominal Aortic Aneurysm Wall Tissue
,”
J. Vasc. Surg.
0741-5214,
43
(
3
), pp.
570
576
.
6.
Valentine
,
R. J.
,
DeCaprio
,
J. D.
,
Castillo
,
J. M.
,
Modrall
,
J. G.
,
Jackson
,
M. R.
, and
Clagett
,
G. P.
, 2000, “
Watchful Waiting in Cases of Small Abdominal Aortic Aneurysms—Appropriate for All Patients
,”
J. Vasc. Surg.
0741-5214,
32
(
3
), pp.
441
448
.
7.
Di Martino
,
E. S.
, and
Vorp
,
D. A.
, 2003, “
Effect of Variation in Intraluminal Thrombus Constitutive Properties on Abdominal Aortic Aneurysm Wall Stress
,”
Ann. Biomed. Eng.
0090-6964,
31
(
7
), pp.
804
809
.
8.
Thubrikar
,
M. J.
,
Robicsek
,
F.
,
Labrosse
,
M.
,
Chervenkoff
,
V.
, and
Fowler
,
B. L.
, 2003, “
Effect of Thrombus on Abdominal Aortic Aneurysm Wall Dilation and Stress
,”
J. Cardiovasc. Surg.
0021-9509,
44
(
1
), pp.
67
77
.
9.
Vorp
,
D. A.
,
Mandarino
,
W. A.
,
Webster
,
M. W.
, and
Gorcsan
,
J.
III
, 1996, “
Potential Influence of Intraluminal Thrombus on Abdominal Aortic Aneurysm as Assessed by a New Noninvasive Method
,”
Cardiovasc. Surg.
0967-2109,
4
(
6
), pp.
732
739
.
10.
Vorp
,
D. A.
, and
Vande Geest
,
J. P.
, 2005, “
Biomechanical Determinants of Abdominal Aortic Aneurysm Rupture
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
25
(
8
), pp.
1558
1566
.
11.
Schurink
,
G. W. H.
,
van Baalen
,
J. M.
,
Visser
,
M. J. T.
, and
van Bockel
,
J. H.
, 2000, “
Thrombus Within an Aortic Aneurysm Does not Reduce Pressure on the Aneurysmal Wall
,”
J. Vasc. Surg.
0741-5214,
31
(
3
), pp.
501
506
.
12.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
, 2003, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
0741-5214,
37
(
4
), pp.
724
732
.
13.
Scotti
,
C.
,
Shkolnik
,
A.
,
Muluk
,
S.
, and
Finol
,
E.
, 2005, “
Fluid-Structure Interaction in Abdominal Aortic Aneurysms: Effects of Asymmetry and Wall Thickness
,”
Biomed. Eng. Online
1475-925X,
4
:
64
.
14.
Di Martino
,
E.
,
Mantero
,
S.
,
Inzoli
,
F.
,
Melissano
,
G.
,
Astore
,
D.
,
Chiesa
,
R.
, and
Fumero
,
R.
, 1998, “
Biomechanics of Abdominal Aortic Aneurysm in the Presence of Endoluminal Thrombus: Experimental Characterisation and Structural Static Computational Analysis
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
15
(
4
), pp.
290
299
.
15.
Hua
,
J.
, and
Mower
,
W. R.
, 2001, “
Simple Geometric Characteristics Fail to Reliably Predict Abdominal Aortic Aneurysm Wall Stresses
,”
J. Vasc. Surg.
0741-5214,
34
(
2
), pp.
308
315
.
16.
Stringfellow
,
M. M.
,
Lawrence
,
P. F.
, and
Stringfellow
,
R. G.
, 1987, “
The Influence of Aorta Aneurysm Geometry Upon Stress in the Aneurysm Wall
,”
J. Surg. Res.
0022-4804,
42
(
4
), pp.
425
433
.
17.
Vorp
,
D. A.
,
Raghavan
,
M. L.
, and
Webster
,
M. W.
, 1998, “
Mechanical Wall Stress in Abdominal Aortic Aneurysm: Influence of Diameter and Asymmetry
,”
J. Vasc. Surg.
0741-5214,
27
(
4
), pp.
632
639
.
18.
Wolters
,
B. J. B. M.
,
Rutten
,
M. C. M.
,
Schurink
,
G. W. H.
,
Kose
,
U.
,
de Hart
,
J.
, and
van de Vosse
,
F. N.
, 2005, “
A Patient-Specific Computational Model of Fluid-Structure Interaction in Abdominal Aortic Aneurysms
,”
Med. Eng. Phys.
1350-4533,
27
(
10
), pp.
871
883
.
19.
Roach
,
M. R.
, and
Burton
,
A. C.
, 1957, “
The Reason for the Shape of the Distensibility Curves of Arteries
,”
Can. J. Biochem. Physiol.
0576-5544,
35
(
8
), pp.
681
690
.
20.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
(
1–3
), pp.
1
48
.
21.
Geest
,
J. P. V.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
, 2006, “
The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta
,”
J. Biomech.
0021-9290,
39
(
7
), pp.
1324
1334
.
22.
Papaharilaou
,
Y.
,
Ekaterinaris
,
J. A.
,
Manousaki
,
E.
, and
Katsamouris
,
A. N.
, 2007, “
A Decoupled Fluid Structure Approach for Estimating Wall Stress in Abdominal Aortic Aneurysms
,”
J. Biomech.
0021-9290,
40
(
2
), pp.
367
377
.
23.
de Putter
,
S.
,
Wolters
,
B. J.
,
Rutten
,
M. C.
,
Breeuwer
,
M.
,
Gerritsen
,
F. A.
, and
van de Vosse
,
F. N.
, 2007, “
Patient-Specific Initial Wall Stress in Abdominal Aortic Aneurysms With a Backward Incremental Method
,”
J. Biomech.
0021-9290,
40
(
5
), pp.
1081
1090
.
24.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
, 2000, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
0021-9290,
33
(
4
), pp.
475
482
.
25.
Mooney
,
M.
, 1940, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
0021-8979,
11
(
9
), pp.
582
592
.
26.
Di Martino
,
F. S.
,
Guadagn
G.
,
Fumero
,
A.
,
Ballerini
,
G.
,
Spirito
,
R.
,
Biglioli
,
P.
, and
Redaelli
,
A.
, 2001, “
Fluid-Structure Interaction Within Realistic Three-Dimensional Models of the Aneurysmatic Aorta as a Guidance to Assess the Risk of Rupture of the Aneurysm
,”
Med. Eng. Phys.
1350-4533,
23
, pp.
647
655
.
27.
Venkatasubramaniam
,
A. K.
,
Fagan
,
M. J.
,
Mehta
,
T.
,
Mylankal
,
K. J.
,
Ray
,
B.
,
Kuhan
,
G.
,
Chetter
,
I. C.
, and
McCollum
,
P. T.
, 2004, “
A Comparative Study of Aortic Wall Stress Using Finite Element Analysis for Ruptured and Non-Ruptured Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
28
(
2
), pp.
168
176
.
28.
Vito
,
R. P.
, and
Hickey
,
J.
, 1980, “
The Mechanical-Properties of Soft-Tissues. 2. The Elastic Response of Arterial Segments
,”
J. Biomech.
0021-9290,
13
(
11
), pp.
951
957
.
29.
Olufsen
,
M. S.
,
Peskin
,
C. S.
,
Kim
,
W. Y.
,
Pedersen
,
E. M.
,
Nadim
,
A.
, and
Larsen
,
J.
, 2000, “
Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions
,”
Ann. Biomed. Eng.
0090-6964,
28
(
11
), pp.
1281
1299
.
30.
Perktold
,
K.
,
Peter
,
R. O.
,
Resch
,
M.
, and
Langs
,
G.
, 1991, “
Pulsatile Non-Newtonian Blood-Flow in 3-Dimensional Carotid Bifurcation Models—A Numerical Study of Flow Phenomena Under Different Bifurcation Angles
,”
J. Biomed. Eng.
0141-5425,
13
(
6
), pp.
507
515
.
You do not currently have access to this content.