This study aims at investigating three-dimensional subject-specific cerebrospinal fluid (CSF) dynamics in the inferior cranial space, the superior spinal subarachnoid space (SAS), and the fourth cerebral ventricle using a combination of a finite-volume computational fluid dynamics (CFD) approach and magnetic resonance imaging (MRI) experiments. An anatomically accurate 3D model of the entire SAS of a healthy volunteer was reconstructed from high resolution T2 weighted MRI data. Subject-specific pulsatile velocity boundary conditions were imposed at planes in the pontine cistern, cerebellomedullary cistern, and in the spinal subarachnoid space. Velocimetric MRI was used to measure the velocity field at these boundaries. A constant pressure boundary condition was imposed at the interface between the aqueduct of Sylvius and the fourth ventricle. The morphology of the SAS with its complex trabecula structures was taken into account through a novel porous media model with anisotropic permeability. The governing equations were solved using finite-volume CFD. We observed a total pressure variation from within one cardiac cycle in the investigated domain. Maximum CSF velocities of about occurred in the inferior section of the aqueduct, in the left foramen of Luschka, and in the foramen of Magendie. Flow velocities in the right foramen of Luschka were found to be significantly lower than in the left, indicating three-dimensional brain asymmetries. The flow in the cerebellomedullary cistern was found to be relatively diffusive with a peak Reynolds number , while the flow in the pontine cistern was primarily convective with a peak . The net volumetric flow rate in the spinal canal was found to be negligible despite CSF oscillation with substantial amplitude with a maximum volumetric flow rate of . The observed transient flow patterns indicate a compliant behavior of the cranial subarachnoid space. Still, the estimated deformations were small owing to the large parenchymal surface. We have integrated anatomic and velocimetric MRI data with computational fluid dynamics incorporating the porous SAS morphology for the subject-specific reconstruction of cerebrospinal fluid flow in the subarachnoid space. This model can be used as a basis for the development of computational tools, e.g., for the optimization of intrathecal drug delivery and computer-aided evaluation of cerebral pathologies such as syrinx development in syringomelia.
Skip Nav Destination
e-mail: dimos.poulikakos@ethz.ch
e-mail: vartan.kurtcuoglu@ethz.ch
Article navigation
February 2009
Research Papers
Three-Dimensional Computational Modeling of Subject-Specific Cerebrospinal Fluid Flow in the Subarachnoid Space
Sumeet Gupta,
Sumeet Gupta
Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering,
ETH Zurich
, 8092 Zurich, Switzerland
Search for other works by this author on:
Michaela Soellinger,
Michaela Soellinger
Institute for Biomedical Engineering,
University of Zurich
, CH-8006 Zurich, Switzerland; ETH Zurich
, 8092 Zurich, Switzerland
Search for other works by this author on:
Peter Boesiger,
Peter Boesiger
Institute for Biomedical Engineering,
University of Zurich
, CH-8006 Zurich, Switzerland; ETH Zurich
, 8092 Zurich, Switzerland
Search for other works by this author on:
Dimos Poulikakos,
Dimos Poulikakos
Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering,
e-mail: dimos.poulikakos@ethz.ch
ETH Zurich
, 8092 Zurich, Switzerland
Search for other works by this author on:
Vartan Kurtcuoglu
Vartan Kurtcuoglu
Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering,
e-mail: vartan.kurtcuoglu@ethz.ch
ETH Zurich
, 8092 Zurich, Switzerland
Search for other works by this author on:
Sumeet Gupta
Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering,
ETH Zurich
, 8092 Zurich, Switzerland
Michaela Soellinger
Institute for Biomedical Engineering,
University of Zurich
, CH-8006 Zurich, Switzerland; ETH Zurich
, 8092 Zurich, Switzerland
Peter Boesiger
Institute for Biomedical Engineering,
University of Zurich
, CH-8006 Zurich, Switzerland; ETH Zurich
, 8092 Zurich, Switzerland
Dimos Poulikakos
Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering,
ETH Zurich
, 8092 Zurich, Switzerlande-mail: dimos.poulikakos@ethz.ch
Vartan Kurtcuoglu
Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering,
ETH Zurich
, 8092 Zurich, Switzerlande-mail: vartan.kurtcuoglu@ethz.ch
J Biomech Eng. Feb 2009, 131(2): 021010 (11 pages)
Published Online: December 10, 2008
Article history
Received:
October 23, 2007
Revised:
August 25, 2008
Published:
December 10, 2008
Citation
Gupta, S., Soellinger, M., Boesiger, P., Poulikakos, D., and Kurtcuoglu, V. (December 10, 2008). "Three-Dimensional Computational Modeling of Subject-Specific Cerebrospinal Fluid Flow in the Subarachnoid Space." ASME. J Biomech Eng. February 2009; 131(2): 021010. https://doi.org/10.1115/1.3005171
Download citation file:
Get Email Alerts
Related Articles
Mixing and Modes of Mass Transfer in the Third Cerebral Ventricle: A Computational Analysis
J Biomech Eng (October,2007)
Experimental Techniques for Studying Poroelasticity in Brain Phantom Gels Under High Flow Microinfusion
J Biomech Eng (May,2010)
Computational Modeling of the Mechanical Behavior of the Cerebrospinal Fluid System
J Biomech Eng (April,2005)
Related Proceedings Papers
Related Chapters
Experimental Studies
Nanoparticles and Brain Tumor Treatment
Conclusions
Chitosan and Its Derivatives as Promising Drug Delivery Carriers
Brain Tissue Segmentation in MRI Images Using Random Forest Classifier and Gossip Based Neighborhood
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)