The arterial wall is a complex fiber-reinforced composite. Pathological conditions, such as aneurysms, significantly alter the mechanical response of the arterial wall, resulting in a loss of elasticity, enhanced anisotropy, and increased chances of mechanical failure. Invariant-based models of the healthy and aneurysmal abdominal aorta were constructed based on first principles and published experimental data with implementations for several numerical cases, as well as comparisons to current healthy and aneurysmal tissue data. Inherent limitations of a traditional invariant-based methodology are also discussed and compared to the models’ ability to accurately reproduce experimental trends. The models capture the nonlinear and anisotropic mechanical responses of the two arterial sections and make reasonable predictions regarding the effects of alterations in healthy and diseased tissue histology. Additionally, the new models exhibit convex and anisotropic monotonically increasing energy contours (suggesting numerical stability) but have potentially the inherent limitations of a covariant theoretical framework. Although the traditional invariant framework exhibits significant covariance, the invariant terms utilized in the new models exhibited limited covariance and are able to accurately reproduce experimental trends. A streamlined implementation is also possible for future numerical investigations of fluid-structure interactions in abdominal aortic aneurysms.

1.
He
,
C. M.
, and
Roach
,
M. R.
, 1994, “
The Composition and Mechanical Properties if Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
0741-5214,
20
, pp.
6
13
.
2.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
3.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
4.
Vito
,
R. P.
, and
Dixon
,
S. A.
, 2003, “
Blood Vessel Constitutive Models: 1995—2002
,”
Annu. Rev. Biomed. Eng.
1523-9829,
5
, pp.
413
439
.
5.
Vorp
,
D. A.
, and
Vande Geest
,
J. P.
, 2005, “
Biomechanical Determinants of Abdominal Aortic Aneurysm Rupture
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
25
, pp.
1558
1566
.
6.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Tissues
,
Springer-Verlag
,
Berlin
.
7.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
, 2006, “
The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta
,”
J. Biomech.
0021-9290,
39
, pp.
1324
1334
.
8.
Thubrikar
,
M. J.
,
Labrosse
,
M.
,
Robicsek
,
F.
,
Al-soudi
,
J.
, and
Fowler
,
B.
, 2001, “
Mechanical Properties of Abdominal Aortic Aneurysm Wall
,”
J. Med. Eng. Technol.
0309-1902,
25
(
4
), pp.
133
142
.
9.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
, 2000, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
0021-9290,
33
, pp.
475
482
.
10.
Sacks
,
M. S.
, 2003, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
280
287
.
11.
DiMartino
,
E. S.
,
Guadagni
,
G.
,
Fumero
,
A.
,
Ballerini
,
G.
,
Spirito
,
R.
,
Biglioli
,
P.
, and
Redaelli
,
A.
, 2001, “
Fluid-Structure Interaction Within Realistic Three-Dimensional Models of the Aneurysmatic Aorta as a Guidance to Assess the Risk of Rupture of the Aneurysm
,”
Med. Eng. Phys.
1350-4533,
23
, pp.
647
655
.
12.
Fillinger
,
M. F.
,
Marra
,
P. S.
,
Raghavan
,
M. L.
, and
Kennedy
,
E. F.
, 2003, “
Prediction of Rupture in Abdominal Aortic Aneurysm Rupture Risk
,”
J. Vasc. Surg.
0741-5214,
36
, pp.
589
596
.
13.
Finol
,
E. A.
,
Keyhani
,
K.
, and
Amon
,
C. H.
, 2003, “
The Effect of Asymmetry in Abdominal Aortic Aneruysms Under Physiologically Realistic Pulsatile Flow Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
207
217
.
14.
Finol
,
E. A.
, and
Scotti
,
C. M.
, 2007, “
Compliant Biomechanics of Abdominal Aortic Aneurysms: A Fluid-Structure Interaction Study
,”
Comput. Struct.
0045-7949,
85
, pp.
1097
1113
.
15.
Li
,
Z.
, and
Kleinstreuer
,
C.
, 2005, “
Blood Flow and Structure Interaction in a Stented Abdominal Aortic Aneurysm Model
,”
Med. Eng. Phys.
1350-4533,
27
, pp.
369
382
.
16.
Kleinstreuer
,
C.
, and
Li
,
Z.
, 2006, “
Analysis and Computer Program for Rupture-Risk Prediction of Abdominal Aortic Aneurysms
,”
Biomed. Eng. Online
1475-925X,
5
, pp.
19
32
.
17.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
, 2004, “
Age Dependency of the Biaxial Biomechanical Behavior of Human Abdominal Aorta
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
815
822
.
18.
Vorp
,
D. A.
, 2007, “
Biomechanics of Abdominal Aortic Aneurysm
,”
J. Biomech.
0021-9290,
40
, pp.
1887
1902
.
19.
Rodríguez
,
J. F.
,
Ruiz
,
C.
,
Doblaré
,
M.
, and
Holzapfel
,
G. A.
, 2008, “
Mechanical Stresses in Abdominal Aortic Aneurysms: Influence of Diameter, Asymmetry, and Material Anisotropy
,”
ASME J. Biomech. Eng.
0148-0731,
130
, p.
021023
.
20.
Länne
,
T.
,
Sonesson
,
B.
,
Bergqvist
,
D.
,
Bngtsson
,
H.
, and
Gustafsson
,
D.
, 1992, “
Diameter and Compliance in the Male Human Abdominal Aorta: Influence of Age and Aortic Aneurysm
,”
Eur. J. Vasc. Surg.
0950-821X,
6
, pp.
178
184
.
21.
Basciano
,
C. A.
, 2007, “
Computational Analysis and Simulation of the Non-Linear Arterial Wall Dynamics With Application to Abdominal Aortic Aneurysms
,” M.S thesis, North Carolina State University, Raleigh, NC.
22.
Schröder
,
J.
, and
Neff
,
P.
, 2003, “
Invariant Formulation of Hyperelastic Transverse Isotropy Based on Polyconvex Free Energy Functions
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
401
445
.
23.
Balzani
,
D.
,
Neff
,
P.
,
Schroder
,
J.
, and
Holzapfel
,
G. A.
, 2006, “
A Polyconvex Framework for Soft Biological Tissues: Adjustment to Experimental Data
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
6052
6070
.
24.
Merodio
,
J.
, and
Ogden
,
R. W.
, 2006, “
The Influence of the Invariant I8 on the Stress-Deformation and Ellipticity Charateristics of Doubly Fiber-Reinforced Non-Linearly Elastic Solids
,”
Int. J. Non-Linear Mech.
0020-7462,
41
, pp.
556
563
.
25.
Spencer
,
A. J. M.
, 1984, “
Constitutive Theory for Strongly Anisotropic Solids
,”
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
,
CISM Courses and Lectures No. 282
,
A. J. M.
Spencer
, ed.,
Springer-Verlag
,
Wien
, pp.
1
32
.
26.
Betten
,
J.
, 1987, “
Formulation of Anisotropic Constitutive Equations
,”
Applications of Tensor Functions in Solid Mechanics
,
CISM Courses and Lectures No., 292
,
J. P.
Boehler
, ed.,
Springer-Verlag
,
Wien
, pp.
227
250
.
27.
Boehler
,
J. P.
, 1987, “
Introduction to the Invariant Formulation of Anisotropic Constitutive Equations
,”
Applications of Tensor Functions in Solid Mechanics
,
CISM Courses and Lectures No., 292
,
J. P.
Boehler
, ed.,
Springer-Verlag
,
Wien
, pp.
13
30
.
28.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
England
.
29.
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Evaluation of Planar Biological Materials
,”
J. Elast.
0374-3535,
61
, pp.
199
246
.
30.
Holzapfel
,
G. A.
, 2007, “
Layer-Specific 3D Residual Deformations of Human Aortas With Non-Atherosclerotic Intimal Thickening
,”
Ann. Biomed. Eng.
0090-6964,
35
, pp.
530
545
.
31.
Schulze-Baur
,
C. A. J.
,
Mörth
,
C.
, and
Holzapfel
,
G. A.
, 2003, “
Passive Mechanical Response of Aged Human Iliac Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
395
406
.
32.
Raghavan
,
M. L.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
, 1996, “
Ex-Vivo Biomechanical Behavior of Abdominal Aortic Aneurysm: Assessment Using a New Mathematical Model
,”
Ann. Biomed. Eng.
0090-6964,
24
, pp.
573
582
.
33.
Criscione
,
J. C.
, 2003, “
Rivlin’s Representation Formila Is Ill-Conceived for the Determination of Response Functions Via Biaxial Testing
,”
J. Elast.
0374-3535,
70
, pp.
129
148
.
34.
Criscione
,
J. C.
, 2005, “
A Constitutive Framework for Tubular Structure That Enables a Semi-Inverse Solution to Extension and Inflation
,”
J. Elast.
0374-3535,
77
, pp.
57
81
.
35.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
, 2006, “
Hyperelastic Modeling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc., Interface
1742-5689,
3
, pp.
15
35
.
36.
Ogden
,
R. W.
, and
Saccomandi
,
G.
, 2007, “
Introducing Mesoscopic Information Into Constitutive Equations for Arterial Walls
,”
Biomechanics and Modeling in Mechanobiology
,
6
(
5
), pp.
333
344
.
37.
Gundiah
,
N.
,
Ratcliffe
,
M. B.
, and
Pruit
,
L. A.
, 2007, “
Determination of Strain Energy Function for Arterial Elastin: Experiments Using Histology and Mechanical Tests
,”
J. Biomech.
0021-9290,
40
, pp.
586
594
.
38.
Zulliger
,
M. A.
,
Fridez
,
P.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
, 2004, “
A Strain Energy Function for Arteries Accounting for Wall Composition and Structure
,”
J. Biomech.
0021-9290,
37
, pp.
989
1000
.
39.
Kleinstreuer
,
C.
,
Li
,
Z.
, and
Farber
,
M. A.
, 2007, “
Fluid-Structure Interaction Analyses of Stented Abdominal Aortic Aneurysms
,”
Annu. Rev. Biomed. Eng.
1523-9829,
9
, pp.
169
204
.
You do not currently have access to this content.