Revealing the molecular events of neuronal growth is critical to obtaining a deeper understanding of nervous system development, neural injury response, and neural tissue engineering. Central to this is the need to understand the mechanical interactions between the cytoskeleton and the cell membrane, and how these interactions affect the overall growth mechanics of neurons. Using finite element analysis, the stress in the membrane produced by an actin filament or a microtubule acting against a deformable membrane was modeled, and the deformation, stress, and strain were computed for the membrane. Parameters to represent the flexural rigidities of the well-studied actin and tubulin cytoskeletal proteins, as well as the mechanical properties of cell membranes, were used in the simulations. Our model predicts that a single actin filament is able to produce a normal contact stress on the cell membrane that is sufficient to cause membrane deformation but not growth. Our model also predicts that under clamped boundary conditions a filament with a buckling strength equal to or smaller than an actin filament would not cause the areal strain in the membrane to exceed 3%, and therefore the filament is incapable of causing membrane rupture or puncture to a safety factor of 1525. Decreasing the radius of the membrane upon which the normal contact stress is acting allows an increase in the amount of normal contact stress that the membrane can withstand before rupture. The model predicts that a 50nm radius membrane can withstand 4MPa of normal contact stress before membrane rupture whereas a 250nm radius membrane can withstand 2.5MPa. Understanding how the mechanical properties of cytoskeletal elements have coevolved with their respective cell membranes may yield insights into the events that gave rise to the sequences and superquaternary structures of the major cytoskeletal proteins. Additionally, numerical modeling of membranes can be used to analyze the forces and stresses generated by nanoscale biological probes during cellular injection.

1.
Yu
,
S.
,
Son
,
F.
,
Yu
,
J.
,
Zhao
,
X.
,
Yu
,
L.
,
Li
,
G.
, and
Xie
,
K.
, 2006, “
Acrylamide Alters Cytoskeletal Protein Level in Rat Sciatic Nerves
,”
Neurochem. Res.
0364-3190,
31
(
10
), pp.
1197
204
.
2.
Pollard
,
T. D.
, and
Earnshaw
,
W. C.
, 2002,
Cell Biology
,
Saunders
,
Philadelphia
, p.
805
.
3.
Karafyllidis
,
I. G.
, and
D. C.
Lagoudas
, 2007, “
Microtubules as Mechanical Force Sensors
,”
BioSystems
0303-2647,
88
(
1–2
), pp.
137
46
.
4.
Dent
,
E. W.
, and
Kalil
,
K.
, 2001, “
Axon Branching Requires Interactions Between Dynamic Microtubules and Actin Filaments
,”
J. Neurosci.
0270-6474,
21
(
24
), pp.
9757
9769
.
5.
Dennerll
,
T. J.
,
Joshi
,
H. C.
,
Steel
,
V. L.
,
Buxbaum
,
R. E.
, and
Heidemann
,
S. R.
, 1988, “
Tension and Compression in the Cytoskeleton of PC-12 Neurites. II: Quantitative Measurements
,”
J. Cell Biol.
0021-9525,
107
(
2
), pp.
665
674
.
6.
Sheetz
,
M. P.
, and
Dai
,
J.
, 1996, “
Modulation of Membrane Dynamics and Cell Motility by Membrane Tension
,”
Trends Cell Biol.
0962-8924,
6
(
3
), pp.
85
89
.
7.
Gittes
,
F.
,
Mickey
,
B.
,
Nettleton
,
J.
, and
Howard
,
J.
, 1993, “
Flexural Rigidity of Microtubules and Actin Filaments Measured From Thermal Fluctuations in Shape
,”
J. Cell Biol.
0021-9525,
120
(
4
), pp.
923
934
.
8.
Kurz
,
J. C.
, and
Williams
,
R. C.
, Jr.
, 1995, “
Microtubule-Associated Proteins and the Flexibility of Microtubules
,”
Biochemistry
0006-2960,
34
(
41
), pp.
13374
13380
.
9.
Dupuis
,
D. E.
,
Guilford
,
W. H.
,
Wu
,
J.
, and
Warshaw
,
D. M.
, 1997, “
Actin Filament Mechanics in the Laser Trap
,”
J. Muscle Res. Cell Motil.
0142-4319,
18
(
1
), pp.
17
30
.
10.
Kojima
,
H.
,
Ishijima
,
A.
, and
Yanagida
,
T.
, 1994, “
Direct Measurement of Stiffness of Single Actin Filaments With and Without Tropomyosin by In Vitro Nanomanipulation
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
91
(
26
), pp.
12962
12966
.
11.
Ingber
,
D. E.
, 1993, “
Cellular Tensegrity: Defining New Rules of Biological Design That Govern the Cytoskeleton
,”
J. Cell. Sci.
0021-9533,
104
, pp.
613
627
.
12.
Mogilner
,
A.
, and
Oster
,
G.
, 2003, “
Force Generation by Actin Polymerization II: The Elastic Ratchet and Tethered Filaments
,”
Biophys. J.
0006-3495,
84
(
3
), pp.
1591
605
.
13.
Schrlau
,
M.
,
Falls
,
E.
,
Ziober
,
B.
, and
Bar
,
H.
, 2007, “
Carbon Nanopipettes for Cell Probes and Intracellular Injection
,”
Nanotechnology
0957-4484,
19
, pp.
1
4
.
14.
Freedman
,
J. R.
,
Mattia
,
D.
,
Korneva
,
G.
,
Gogotsi
,
Y.
,
Friedman
,
G.
, and
Fontecchio
,
A. K.
, 2007, “
Magnetically Assembled Carbon Nanotube Tipped Pipettes
,”
Appl. Phys. Lett.
0003-6951,
90
(
10
), p.
103108
.
15.
Atilgan
,
E.
,
Wirtz
,
D.
, and
Sun
,
S. X.
, 2006, “
Mechanics and Dynamics of Actin-Driven Thin Membrane Protrusions
,”
Biophys. J.
0006-3495,
90
(
1
), pp.
65
76
.
16.
Jean
,
R. P.
,
Chen
,
C. S.
, and
Spector
,
A. A.
, 2005, “
Finite-Element Analysis of the Adhesion-Cytoskeleton-Nucleus Mechanotransduction Pathway During Endothelial Cell Rounding: Axisymmetric Model
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
4
), pp.
594
600
.
17.
Fygenson
,
D. K.
,
Elbaum
,
M.
,
Shraiman
,
B.
, and
Libchaber
,
A.
, 1997, “
Microtubules and Vesicles Under Controlled Tension
,”
Phys. Rev. E
1063-651X,
55
(
1
), pp.
850
859
.
18.
Dai
,
J.
, and
Sheetz
,
M. P.
, 1995, “
Mechanical Properties of Neuronal Growth Cone Membranes Studied by Tether Formation With Laser Optical Tweezers
,”
Biophys. J.
0006-3495,
68
(
3
), pp.
988
996
.
19.
Charras
,
G. T.
,
Williams
,
B. A.
,
Sims
,
S. M.
, and
Horton
,
M. A.
, 2004, “
Estimating the Sensitivity of Mechanosensitive Ion Channels to Membrane Strain and Tension
,”
Biophys. J.
0006-3495,
87
(
4
), pp.
2870
2884
.
20.
Hamill
,
O. P.
, and
Martinac
,
B.
, 2001, “
Molecular Basis of Mechanotransduction in Living Cells
,”
Physiol. Rev.
0031-9333,
81
(
2
), pp.
685
740
.
21.
Kas
,
J.
,
Strey
,
H.
,
Barmann
,
M.
, and
Sackmann
,
E.
, 1993, “
Direct Measurement of the Wave-Vector-Dependent Bending Stiffness of Freely Flickering Actin-Filaments
,”
Europhys. Lett.
0295-5075,
21
(
8
), pp.
865
870
.
22.
Dong
,
L. X.
,
Arai
,
F.
, and
Fukuda
,
T.
, 2004, “
Destructive Constructions of Nanostructures With Carbon Nanotubes Through Nanorobotic Manipulation
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
9
(
2
), pp.
350
357
.
23.
Dent
,
E. W.
,
Callaway
,
J. L.
,
Szebenyi
,
G.
,
Baas
,
P. W.
, and
Kalil
,
K.
, 1999, “
Reorganization and Movement of Microtubules in Axonal Growth Cones and Developing Interstitial Branches
,”
J. Neurosci.
0270-6474,
19
(
20
), pp.
8894
8908
.
24.
Evans
,
E.
, and
Rawicz
,
W.
, 1990, “
Entropy-Driven Tension and Bending Elasticity in Condensed-Fluid Membranes
,”
Phys. Rev. Lett.
0031-9007,
64
(
17
), pp.
2094
2097
.
25.
Boal
,
D. H.
, 2002,
Mechanics of the Cell
,
Cambridge University Press
,
Cambridge
, p.
406
.
26.
Lewis
,
A. K.
, and
P. C.
Bridgman
, 1992, “
Nerve Growth Cone Lamellipodia Contain Two Populations of Actin Filaments That Differ in Organization and Polarity
,”
J. Cell Biol.
0021-9525,
119
(
5
), pp.
1219
43
.
27.
Stamenovic
,
D.
,
Mijailovich
,
S. M.
,
Tolic-Norrelykke
,
I. M.
,
Chen
,
J.
, and
Wang
,
N.
, 2002, “
Cell Prestress. II. Contribution of Microtubules
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
282
(
3
), pp.
C617
C24
.
28.
Dai
,
J.
, and
Sheetz
,
M. P.
, 1995, “
Axon Membrane Flows From the Growth Cone to the Cell Body
,”
Cell
0092-8674,
83
(
5
), pp.
693
701
.
29.
Pollard
,
T. D.
, and
Borisy
,
G. G.
, 2003, “
Cellular Motility Driven by Assembly and Disassembly of Actin Filaments
,”
Cell
0092-8674,
112
(
4
), pp.
453
465
.
30.
Ermilov
,
S. A.
,
Murdock
,
D. R.
,
Qian
,
F.
,
Brownell
,
W. E.
, and
Anvari
,
B.
, 2007, “
Studies of Plasma Membrane Mechanics and Plasma Membrane-Cytoskeleton Interactions Using Optical Tweezers and Fluorescence Imaging
,”
J. Biomech.
0021-9290,
40
(
2
), pp.
476
480
.
31.
Schaefer
,
A. W.
,
Kabir
,
N.
, and
Forscher
,
P.
, 2002, “
Filopodia and Actin Arcs Guide the Assembly and Transport of Two Populations of Microtubules With Unique Dynamic Parameters in Neuronal Growth Cones
,”
J. Cell Biol.
0021-9525,
158
(
1
), pp.
139
152
.
32.
Odde
,
D. J.
,
Ma
,
L.
,
Briggs
,
A. H.
,
DeMarco
,
A.
, and
Kirschner
,
M. W.
, 1999, “
Microtubule Bending and Breaking in Living Fibroblast Cells
,”
J. Cell. Sci.
0021-9533,
112
, pp.
3283
3288
.
33.
Kerssemakers
,
J. W.
,
Munteanu
,
E. L.
,
Laan
,
L.
,
Noetzel
,
T. L.
,
Janson
,
M. E.
, and
Dogterom
,
M.
, 2006, “
Assembly Dynamics of Microtubules at Molecular Resolution
,”
Nature (London)
0028-0836,
442
(7103), pp.
709
712
.
34.
Brangwynne
,
C. P.
,
MacKintosh
,
F. C.
,
Kumar
,
S.
,
Geisse
,
N. A.
,
Talbot
,
J.
,
Mahadevan
,
L.
,
Parker
,
K. K.
,
Ingber
,
D. E.
, and
Weitz
,
D. A.
, 2006, “
Microtubules Can Bear Enhanced Compressive Loads in Living Cells Because of Lateral Reinforcement
,”
J. Cell Biol.
0021-9525,
173
(
5
), pp.
733
741
.
35.
Timoshenko
,
S.
,
Woinowsky-Krieger
,
S.
, 1959, and
Knovel
(Firm),
Theory of Plates and Shells
,
McGraw-Hill
,
New York
, p.
580
.
36.
Ergenc
,
A. F.
, and
Olgac
,
N.
, 2007, “
New Technology for Cellular Piercing: Rotationally Oscillating MuInjector, Description and Validation Tests
,”
Biomed. Microdevices
1387-2176,
9
, pp.
885
891
.
37.
Roth
,
T. L.
,
Howard
,
J.
, and
Wildt
,
D. E.
, 1994, “
Zona Pellucida Piercing Enhances Zona Penetration by Spermatozoa From Normospermic and Teratospermic Domestic Cats
,”
J. Androl
0196-3635,
15
(
2
), pp.
165
173
.
38.
Hill
,
T. L.
, 1987,
Linear Aggregation Theory in Cell Biology
, (
Springer Series in Molecular Biology
),
A.
Rich
, ed.,
Springer-Verlag
,
New York
.
39.
Heidemann
,
S. R.
, and
Wirtz
,
D.
, 2004, “
Towards a Regional Approach to Cell Mechanics
,”
Trends Cell Biol.
0962-8924,
14
(
4
), pp.
160
166
.
40.
Nichol
,
J. A.
, and
Hutter
,
O. F.
, 1996, “
Tensile Strength and Dilatational Elasticity of Giant Sarcolemmal Vesicles Shed From Rabbit Muscle
,”
J. Physiol. (London)
0022-3751,
493
, pp.
187
198
.
41.
Takamatsu
,
H.
, and
Kumagae
,
N.
, 2002, “
Survival of Biological Cells Deformed in a Narrow Gap
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
6
), pp.
780
783
.
You do not currently have access to this content.