Foot placement has long been recognized as the primary mechanism that humans use to restore balance. Many biomechanists have examined where humans place their feet during gait, perturbations, and athletic events. Roboticists have also used foot placement as a means of control but with limited success. Recently, Wight et al. (2008, “Introduction of the Foot Placement Estimator: A Dynamic Measure of Balance for Bipedal Robotics,” ASME J. Comput. Nonlinear Dyn., 3, p. 011009) introduced a planar foot placement estimator (FPE) algorithm that will restore balance to a simplified biped that is falling. This study tested the FPE as a candidate function for sagittal plane human-foot-placement (HFP) by recording the kinematics of 14 healthy subjects while they performed ten walking trials at three speeds. The FPE was highly correlated with HFP (ρ0.997) and its accuracy varied linearly from 2.6 cm to −8.3 cm as walking speed increased. A sensitivity analysis revealed that assumption violations of the FPE cannot account for the velocity-dependent changes in FPE-HFP error suggesting that this behavior is volitional.

1.
Patla
,
A.
, 2003, “
Strategies for Dynamic Stability During Adaptive Human Locomotion
,”
IEEE Eng. Med. Biol. Mag.
0739-5175,
22
, pp.
48
52
.
2.
Patla
,
A.
,
Wijneberg
,
N.
, and
Hill
,
S.
, 1999, “
Control of COM by COP Explains the Response Reversal Observed During Medio-Lateral Perturbations Applied During Human Locomotion
,”
Gait Posture
,
9
, p.
S4
. 0966-6362
3.
Wight
,
D.
,
Kubica
,
E.
, and
Wang
,
D.
, 2008, “
Introduction of the Foot Placement Estimator: A Dynamic Measure of Balance for Bipedal Robotics
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
, p.
011009
.
4.
Lee
,
D.
,
Lishman
,
J.
, and
Thomson
,
J.
, 1982, “
Regulation of Gait in Long Jumping
,”
J. Exp. Psychol. Hum. Percept. Perform
,
8
, pp.
448
459
.
5.
Patla
,
A.
, and
Vickers
,
J.
, 2003, “
How Far Ahead Do We Look When Required to Step on Specific Locations in the Travel Path During Locomotion
,”
Exp. Brain Res.
0014-4819,
148
, pp.
133
138
.
6.
Patla
,
A.
,
Prentice
,
S.
,
Reitdyk
,
S.
,
Allard
,
F.
, and
Martin
,
C.
, 1999, “
What Guides the Selection of Alternate Foot Placement During Locomotion in Humans
,”
Exp. Brain Res.
0014-4819,
128
, pp.
441
450
.
7.
Redfern
,
M.
, and
Schumann
,
T.
, 1994, “
A Model of Foot Placement During Gait
,”
J. Biomech.
0021-9290,
27
, pp.
1339
1346
.
8.
Townsend
,
M.
, and
Seireg
,
A.
, 1972, “
The Synthesis of Bipedal Locomotion
,”
J. Biomech.
0021-9290,
5
, pp.
71
83
.
9.
Juang
,
J –G.
, 2000, “
Fuzzy Neural Network Approaches for Robotic Gait Synthesis
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
1083-4419,
30
(
4
), pp.
594
601
.
10.
Taga
,
G.
,
Yamaguchi
,
Y.
, and
Shimizu
,
H.
, 1991, “
Self-Organized Control of Bipedal Locomotion by Neural Oscillators in Unpredictable Environment
,”
Biol. Cybern.
0340-1200,
65
, pp.
147
159
.
11.
Wojtyra
,
M.
, 2003, “
Multibody Simulation Model of Human Walking
,”
Mech. Based Des. Struct. Mach.
1539-7734,
31
(
3
), pp.
357
377
.
12.
Peasgood
,
M.
,
Kubica
,
E.
, and
McPhee
,
J.
, 2007, “
Stabilization and Energy Optimization of a Dynamic Walking Gait Simulation
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
2
, pp.
65
72
.
13.
Pratt
,
J.
, and
Pratt
,
G.
, 1999, “
Exploiting Natural Dynamics in the Control of a 3D Bipedal Walking Simulation
,”
CLAWAR
, Portsmouth, UK.
14.
Kuo
,
A.
, 2002, “
Energetics of Actively Powered Locomotion Using the Simplest Walking Model
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
113
120
.
15.
McGeer
,
T.
, 1993, “
Dynamics and Control of Bipedal Locomotion
,”
J. Theor. Biol.
0022-5193,
163
, pp.
277
314
.
16.
Raibert
,
M.
, 1986,
Legged Robots That Balance
,
1st ed.
,
MIT
,
Cambridge, MA
.
17.
Vukobratovic
,
M.
, and
Barovac
,
B.
, 2004, “
Zero-Moment Point—Thirty Five Years of Its Life
,”
J. Humanoid Rob.
,
1
(
1
0219-8436), pp.
157
173
.
18.
Millard
,
M.
,
McPhee
,
J.
, and
Kubica
,
E.
, 2009, “
Multi-Step Forward Dynamic Gait Simulation
,”
Multibody Dynamics: Computational Methods and Applications
,
C.
Bottasso
, ed.,
Springer
,
New York
, pp.
25
43
.
19.
Kuo
,
A.
, 2001, “
A Simple Model of Bipedal Walking Predicts the Preferred Speed-Step Length Relationship
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
264
269
.
20.
Whittlesey
,
S.
,
Van Emmerik
,
R.
, and
Hamill
,
J.
, 2000, “
The Swing Phase of Human Walking is Not a Passive Movement
,”
Motor Control
1087-1640,
4
, pp.
273
292
.
21.
Hirai
,
K.
,
Hirose
,
M.
,
Haikawa
,
Y.
, and
Takenaka
,
T.
, 1998,
The Development of Honda Humanoid Robot
,
ICRA
.
22.
Winter
,
D.
, 2005,
Biomechanics and Motor Control of Human Movement
,
3rd ed.
,
Wiley
,
Hoboken, NJ
.
23.
Essen
,
H.
, 1993, “
Average Angular Velocity
,”
Eur. J. Phys.
0143-0807,
14
, pp.
440
445
.
24.
Karcnik
,
T.
, 2003, “
Using Motion Analysis Data for Foot-Floor Contact Detection
,”
Med. Biol. Eng. Comput.
0140-0118,
41
, pp.
509
512
.
25.
Herr
,
H.
, and
Popovic
,
M.
, 2008, “
Angular Momentum in Human Walking
,”
J. Exp. Biol.
0022-0949,
211
, pp.
467
481
.
26.
Riffenburgh
,
R.
, 2006,
Statistics in Medicine
,
2nd ed.
,
Elsevier
,
Burlington, MA
.
27.
Donelan
,
J.
,
Kram
,
R.
, and
Kuo
,
A.
, 2002, “
Simultaneous Positive and Negative External Mechanical Work in Human Walking
,”
J. Biomech.
0021-9290,
35
, pp.
117
124
.
28.
Kingma
,
I.
,
Toussaint
,
H.
,
De Looze
,
M.
, and
Van Dieen
,
J.
, 1996, “
Segment Inertial Parameter Evaluation in Two Anthropomorphic Models by Application of a Dynamic Linked Segment Model
,”
J. Biomech
.,
29
, pp.
693
704
. 0002-7820
29.
Hurmuzlu
,
Y.
, and
Basdogan
,
C.
, 1994, “
On the Measurement of Dynamic Stability of Human Locomotion
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
30
36
.
30.
Hof
,
A.
,
Gazendam
,
M.
, and
Sinke
,
W.
, 2005, “
The Condition for Dynamic Stability
,”
J. Biomech.
0021-9290,
38
(
1
), pp.
1
8
.
31.
Karcnik
,
T.
, 2004, “
Stability in Legged Locomotion
,”
Biol. Cybern.
0340-1200,
90
, pp.
51
58
.
32.
Dingwell
,
J.
, and
Kang
,
H.
, 2007, “
Differences Between Local and Orbital Dynamic Stability During Human Walking
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
586
593
.
You do not currently have access to this content.