The stress distribution in the vessel wall has an important bearing on vascular function in health and disease. We studied the relationship between the transmural stress distribution and the opening angle (OA) to determine the stress gradient. The simulation of wall stress was based on transmural measurements of strain and material properties of coronary arteries in reference to the zero-stress state. A one-layer model with material constants of the intact vessel was used to calculate the circumferential stress distribution. A sensitivity analysis using both one- and two-layer models (intima-media and adventitia layers) was carried out to study the effect of the OA on the circumferential stress distribution and average circumferential stress. A larger OA always shifts the circumferential stress from the intima-media to the adventitia layer. We report a new observation that the circumferential stress at the adventitia may exceed that at the intima at physiological loading due to the larger OA in the porcine coronary artery. This has important implications for growth and remodeling, where an increase in opening angle may shift excessive stress from the inner layer to the outer layer.

1.
Davis
,
P. F.
,
Dewey
,
C. F.
,
Bussolari
,
S. R.
,
Gordon
,
E. J.
, and
Gimbrone
,
M. A.
, 1984, “
Influence of Hemodynamic Forces on Vascular Endothelial Function—In Vitro Studies of Shear Stress and Pinocytosis in Bovine Aortic Cells
,”
J. Clin. Invest.
0021-9738,
73
(
4
), pp.
1121
1129
.
2.
Davis
,
P. F.
, 1995, “
Flow-Mediated Endothelial Mechanotransduction
,”
Physiol. Rev.
0031-9333,
75
(
3
), pp.
519
560
.
3.
Thubrikar
,
M. J.
,
Baker
,
J. W.
, and
Nolan
,
S. P.
, 1988, “
Inhibition of Atherosclerosis Associated With Reduction of Arterial Intramural Stress in Rabbits
,”
Arteriosclerosis (Dallas)
0276-5047,
8
(
4
), pp.
410
420
.
4.
Stone
,
P. H.
,
Coskun
,
A. U.
,
Kinlay
,
S.
,
Clark
,
M. E.
,
Sonka
,
M.
,
Wahle
,
A.
,
Ilegbusi
,
O. J.
,
Yeghiazarians
,
Y.
,
Popma
,
J. J.
,
Orav
,
J.
,
Kuntz
,
R. E.
, and
Feldman
,
C. L.
, 2003, “
Effect of Endothelial Shear Stress on the Progression of Coronary Artery Disease, Vascular Remodeling, and In-Stent Restenosis in Humans—In Vivo 6-Month Follow-Up Study
,”
Circulation
0009-7322,
108
(
4
), pp.
438
444
.
5.
Wentzel
,
J. J.
,
Kloet
,
J.
,
Andhyiswara
,
I.
,
Oomen
,
J. A. F.
,
Schuurbiers
,
J. C. H.
,
de Smet
,
B. J. G. L.
,
Post
,
M. J.
,
de Kleijn
,
D.
,
Pasterkamp
,
G.
,
Borst
,
C.
,
Slager
,
C. J.
, and
Krams
,
R.
, 2001, “
Shear-Stress and Wall-Stress Regulation of Vascular Remodeling After Balloon Angioplasty—Effect of Matrix Metalloproteinase Inhibition
,”
Circulation
0009-7322,
104
(
1
), pp.
91
96
.
6.
Traub
,
O.
, and
Berk
,
B. C.
, 1998, “
Laminar Shear Stress-Mechanisms by Which Endothelial Cells Transduce and Atheroprotective Force
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
18
(
5
), pp.
677
685
.
7.
Chien
,
S.
,
Li
,
S.
,
Shyy
,
J. Y. J.
, 1998, “
Effects of Mechanical Forces on Signal Transduction and Gene Expression in Endothelial Cells
,”
Hypertension
0194-911X,
31
(
1
), pp.
162
169
.
8.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1986, “
On Residual Stresses in Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
108
, pp.
189
192
.
9.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1983, “
Three Dimensional Stress Distribution in Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
105
, pp.
268
274
.
10.
Fung
,
Y. C.
, and
Liu
,
S. Q.
, 1992, “
Strain Distribution in Small Blood Vessels With Zero-Stress State Taken Into Consideration
,”
Am. J. Physiol.
0002-9513,
262
(
2
), pp.
H544
H552
.
11.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
12.
Matsumoto
,
T.
, and
Sato
,
M.
, 2002, “
Analysis of Stress and Strain Distribution in the Artery Wall Consisted of Layers With Different Elastic Modulus and Opening Angle
,”
JSME Int. J., Ser. C
1340-8062,
45
(
4
), pp.
906
912
.
13.
Matsumoto
,
T.
, and
Hayashi
,
K.
, 1996, “
Stress and Strain Distribution in Hypertensive and Normotensive Rat Aorta Considering Residual Strain
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
1
), pp.
62
73
.
14.
Vaishnav
,
R. N.
,
Young
,
J. T.
, and
Patel
,
D. J.
, 1973, “
Distribution of Stresses and of Strain—Energy Density Through the Wall Thickness in a Canine Aortic Segment
,”
Circ. Res.
0009-7330,
32
, pp.
577
583
.
15.
Guo
,
X. M.
,
Lu
,
X.
, and
Kassab
,
G. S.
, 2005, “
Transmural Strain Distribution in the Blood Vessel Wall
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
288
(
2
), pp.
H881
H886
.
16.
Wang
,
C.
,
Garcia
,
M.
,
Lu
,
X.
,
Lanir
,
Y.
, and
Kassab
,
G. S.
, 2006, “
Three-Dimensional Mechanical Properties of Porcine Coronary Arteries: A Validated Two-Layer Model
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
291
(
3
), pp.
H1200
H1209
.
17.
Fung
,
Y. C.
, 1990,
Biomechanics: Motion, Flow, Stress and Growth
,
Springer-Verlag
,
New York
.
18.
Fung
,
Y. C.
, and
Liu
,
S. Q.
, 1991, “
Changes of Zero-Stress State of Rat Pulmonary-Arteries in Hypoxic Hypertension
,”
J. Appl. Physiol.
8750-7587,
70
(
6
), pp.
2455
2470
.
19.
Liu
,
S. Q.
, and
Fung
,
Y. C.
, 1989, “
Relationship Between Hypertension, Hypertrophy, and Opening Angle of Zero-Stress State of the Arteries Following Aortic Constriction
,”
ASME J. Biomech. Eng.
0148-0731,
111
(
4
), pp.
325
335
.
20.
Fridez
,
P.
,
Makino
,
A.
,
Miyazaki
,
H.
,
Meister
,
J. J.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
, 2001, “
Short-Term Biomechanical Adaptation of the Rat Carotid to Acute Hypertension: Contribution of Smooth Muscle
,”
Ann. Biomed. Eng.
0090-6964,
29
(
1
), pp.
26
34
.
21.
Fung
,
Y. C.
, and
Liu
,
S. Q.
, 1989, “
Change of Residual Strains in Arteries Due to Hypertrophy Caused by Aortic Constriction
,”
Circ. Res.
0009-7330,
65
(
5
), pp.
1340
1349
.
22.
Fridez
,
P.
,
Zulliger
,
M.
,
Bobard
,
F.
,
Montorzi
,
G.
,
Miyazaki
,
H.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
, 2003, “
Geometrical, Functional, and Histomorphometric Adaptation of Rat Carotid Artery in Induced Hypertension
,”
J. Biomech.
0021-9290,
36
(
5
), pp.
671
680
.
You do not currently have access to this content.