Computational fluid dynamics (CFD) is used to asses the hydrodynamic performance of a positive displacement left ventricular assist device. The computational model uses implicit large eddy simulation direct resolution of the chamber compression and modeled valve closure to reproduce the in vitro results. The computations are validated through comparisons with experimental particle image velocimetry (PIV) data. Qualitative comparisons of flow patterns, velocity fields, and wall-shear rates demonstrate a high level of agreement between the computations and experiments. Quantitatively, the PIV and CFD show similar probed velocity histories, closely matching jet velocities and comparable wall-strain rates. Overall, it has been shown that CFD can provide detailed flow field and wall-strain rate data, which is important in evaluating blood pump performance.

1.
Magovern
,
J. A.
,
Pennock
,
J. L.
,
Campbell
,
D. B.
,
Pae
,
W. E.
,
Pierce
,
W. S.
, and
Waldhausen
,
J. A.
, 1986, “
Bridge to Heart Transplantation: The Penn State Experience
,”
J. Heart Transplant.
,
5
, pp.
196
202
. 0887-2570
2.
Snyder
,
A. J.
,
Rosenberg
,
G.
,
Weiss
,
W. J.
,
Ford
,
S. K.
,
Nazarian
,
R. A.
,
Hicks
,
D. L.
,
Marlotte
,
J. A.
,
Kawaguchi
,
O.
,
Prophet
,
G. A.
, and
Sapirstein
,
J. S.
, 1993, “
In Vivo Testing of a Completely Implanted Total Artificial Heart System
,”
ASAIO J.
1058-2916,
39
, pp.
M177
M184
.
3.
Mehta
,
S. M.
,
Weiss
,
W. J.
,
Snyder
,
A. J.
,
Prothet
,
G. A.
,
Pae
,
W. E.
,
Rosenberg
,
G.
, and
Pierce
,
W. S.
, 2000, “
Testing of a 50 cc Stroke Volume Completely Implantable Artificial Heart: Expanding Chronic Mechanical Circulatory Support to Women, Adolescents, and Small Statue Men
,”
ASAIO J.
1058-2916,
46
, pp.
779
782
.
4.
Baldwin
,
J. T.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
, and
Tarbel
,
J. M.
, 1994, “
LDA Measurements of Mean Velocity and Reynolds Stress Fields Within an Artificial Heart Ventricle
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
190
200
.
5.
Hochareon
,
P.
, 2003, “
Development of Particle Image Velocimetry (PIV) for Wall Shear Stress Estimation Within a 50cc Penn State Artificial Heart Ventricular Chamber
,” Ph.D. thesis, Pennsylvania State Universiy, University Park, PA.
6.
Francischelli
,
D. E.
,
Tarbell
,
J. M.
, and
Geselowitz
,
D. B.
, 1991, “
Local Blood Residence Times in the Penn State Artificial Heart
,”
Artif. Organs
0160-564X,
15
, pp.
218
224
.
7.
Hochareon
,
P.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
, 2004, “
Wall Shear-Rate Estimation Within the 50cc Penn State Artificial Heart Using Particle Image Velocimetry
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
430
437
.
8.
Hochareon
,
P.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
,
Tarbell
,
J. M.
, and
Manning
,
K. B.
, 2003, “
Diaphragm Motion Affects Flow Patterns in an Artificial Heart
,”
Artif. Organs
0160-564X,
27
(
12
), pp.
1102
1109
.
9.
Hochareon
,
P.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
, 2004, “
Fluid Dynamic Analysis of the 50cc Penn State Artificial Heart Under Physiological Operating Conditions Using Particle Image Velocimetry
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
585
593
.
10.
Bachmann
,
C.
,
Hugo
,
G.
,
Rosenberg
,
G.
,
Deutsch
,
S.
,
Fontaine
,
A. A.
, and
Tarbell
,
J. M.
, 2000, “
Fluid Dynamics of a Pediatric Ventricular Assist Device
,”
Artif. Organs
0160-564X,
24
(
5
), pp.
362
372
.
11.
Yamanaka
,
H.
, and
Rosenberg
,
G.
, 2003, “
A Multiscale Surface Evaluation of Thrombosis in Left Ventricular Assist Systems
,”
ASAIO J.
1058-2916,
49
, p.
222
.
12.
Daily
,
B. B.
,
Pettitt
,
T. W.
,
Sutera
,
S. P.
, and
Pierce
,
W. S.
, 1996, “
Pierce-Donarchy Pediatric VAD: Progress in Development
,”
Ann. Thorac. Surg.
0003-4975,
61
, pp.
437
443
.
13.
Deutsch
,
S.
,
Tarbell
,
J. M.
,
Manning
,
K. B.
,
Rosenberg
,
G.
, and
Fontaine
,
A. A.
, 2006, “
Experimental Fluid Mechanics of Pulsatile Artificial Blood Pumps
,”
Annu. Rev. Fluid Mech.
0066-4189,
38
, pp.
65
86
.
14.
Brown
,
C. H.
,
Leverett
,
L. B.
, and
Lewis
,
C. H.
, 1975, “
Morphological, Biochemical, and Functional Changes in Human Platelets Subjected to Shear Stress
,”
J. Lab. Clin. Med.
0022-2143,
86
, pp.
462
471
.
15.
Konig
,
C. S.
, and
Clark
,
C.
, 2001, “
Flow Mixing and Fluid Residence Times in a Model of a Ventricular Assist Device
,”
Med. Eng. Phys.
1350-4533,
23
, pp.
99
110
.
16.
Yoganathan
,
A. P.
,
Reul
,
H.
, and
Blank
,
M. M.
, “
Heart Valve Replacements: Problems and Developments
,” in
Cardiovascular Biomaterials
(
Berlin
,
Springer-Verlag
, 1992), pp.
173
183
.
17.
Lu
,
P. C.
,
Lau
,
H. C.
, and
Liu
,
J. S.
, 2001, “
A Reevaluation and Discussion on the Threshold Limit for Hemolysis in a Turbulent Shear Flow
,”
J. Biomech.
0021-9290,
34
, pp.
1361
1364
.
18.
Kreider
,
J. W.
,
Manning
,
K. B.
,
Oley
,
L. A.
,
Fontaine
,
A. A.
, and
Deutsch
,
S.
, 2006, “
A Parametric Study of Valve Orientation Flow Dynamics
,”
ASAIO J.
1058-2916,
52
, pp.
123
131
.
19.
Oley
,
L. A.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
, and
Deutsch
,
S.
, 2005, “
Off-Design Considerations of the 50cc Penn State Ventricular Assist Device
,”
Artif. Organs
0160-564X,
29
(
5
), pp.
378
386
.
20.
Avrahami
,
I.
, 2003, “
The Effects of Structure on the Hemodynamics of Artificial Blood Pumps
,” Ph.D. thesis, Tel-Aviv University, Tel-Aviv, Israel.
21.
Avrahami
,
I.
,
Rosenfeld
,
M.
, and
Einav
,
S.
, 2006, “
The Hemodynamics of the Berlin Pulsatile VAD and the Role of Its MHV Configuration
,”
J. Biomed. Eng.
0141-5425,
34
(
9
), pp.
1373
1388
.
22.
Avrahami
,
I.
,
Rosenfeld
,
M.
,
Raz
,
S.
, and
Einav
,
S.
, 2006, “
Numerical Model of Flow in a Sac-Type Ventricular Assist Device
,”
Artif. Organs
0160-564X,
30
(
7
), pp.
529
538
.
23.
Stijnen
,
J.
, 2004,
Interaction Between the Mitral and Aortic Heart Valve: An Experimental and Computational Study
, Ph.D. thesis, Eindhoven University, Eindhoven, The Netherlands.
24.
Stijnen
,
J.
, 2004, “
Evaluation of a Fictitious Domain Method for Predicting Dynamic Response of Mechanical Heart Valves
,”
J. Fluids Struct.
0889-9746,
19
, pp.
835
850
.
25.
Medvitz
,
R. B.
,
Kreider
,
J. W.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Paterson
,
E. G.
, 2007, “
Development and Validation of a Computational Fluid Dynamics Methodology for Simulation of Pulsatile Left Ventricular Assist Devices
,”
ASAIO J.
1058-2916,
53
, pp.
122
131
.
26.
Medvitz
,
R. B.
, 2008, “
Development and Validation of a Computational Fluid Dynamic Methodology for Pulsatile Blood Pump Design and Prediction of Thrombus Potential
,” Ph.D. thesis, Pennsylvania State University, University Park, PA.
27.
Hubbell
,
J. A.
, and
McIntire
,
L. V.
, 1986, “
Visualization and Analysis of Mural Thrombogenesis on Collagen, Polyurethane, and Nylon
,”
Biomaterials
0142-9612,
7
, pp.
354
363
.
28.
Rosenberg
,
G.
,
Phillips
,
W. M.
,
Landis
,
D. L.
, and
Pierce
,
W. S.
, 1981, “
Design and Evaluation of the Pennsylvania State University Mock Circulatory System
,”
ASAIO J.
1058-2916,
4
(
2
), pp.
41
49
.
29.
Shakib
,
F.
, 1989, “
Finite Element Analysis of the Compressible Euler and Navier–Stokes Equations
,” Ph.D. thesis, Stanford University, Palo Alto, CA.
30.
Hughes
,
T. J. R.
, and
Shakib
,
F.
, 1988, “
Computational Aerodynamics and the Finite Element Method
,”
AIAA/AAS Astrodynamics Conference
, Reno, NV, Jan. 11–15, AIAA Paper No. 88-0031.
31.
Jansen
,
K. E.
,
Whiting
,
C.
, and
Hulbert
,
G. M.
, 2000, “
A Generalized-Alpha Method for Integrating the Filtered Navier-Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
305
319
.
You do not currently have access to this content.