The highly organized structure and composition of the annulus fibrosus provides the tissue with mechanical behaviors that include anisotropy and nonlinearity. Mathematical models are necessary to interpret and elucidate the meaning of directly measured mechanical properties and to understand the structure-function relationships of the tissue components, namely, the fibers and extrafibrillar matrix. This study models the annulus fibrosus as a combination of strain energy functions describing the fibers, matrix, and their interactions. The objective was to quantify the behavior of both nondegenerate and degenerate annulus fibrosus tissue using uniaxial tensile experimental data. Mechanical testing was performed with samples oriented along the circumferential, axial, and radial directions. For samples oriented along the radial direction, the toe-region modulus was 2× stiffer with degeneration. However, no other differences in measured mechanical properties were observed with degeneration. The constitutive model fit well to samples oriented along the radial and circumferential directions (R20.97). The fibers supported the highest proportion of stress for circumferential loading at 60%. There was a 70% decrease in the matrix contribution to stress from the toe-region to the linear-region of both the nondegenerate and degenerate tissue. The shear fiber-matrix interaction (FMI) contribution increased by 80% with degeneration in the linear-region. Samples oriented along the radial and axial direction behaved similarly under uniaxial tension (modulus=0.32MPa versus 0.37 MPa), suggesting that uniaxial testing in the axial direction is not appropriate for quantifying the mechanics of a fiber reinforcement in the annulus. In conclusion, the structurally motivated nonlinear anisotropic hyperelastic constitutive model helps to further understand the effect of microstructural changes with degeneration, suggesting that remodeling in the subcomponents (i.e., the collagen fiber, matrix and FMI) may minimize the overall effects on mechanical function of the bulk material with degeneration.

1.
Cassidy
,
J. J.
,
Hiltner
,
A.
, and
Baer
,
E.
, 1989, “
Hierarchical Structure of the Intervertebral Disc
,”
Connect. Tissue Res.
0300-8207,
23
(
1
), pp.
75
88
.
2.
Elliott
,
D. M.
, and
Setton
,
L. A.
, 2001, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus: Experimental Measurement and Material Model Predictions
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
3
), pp.
256
263
.
3.
Guerin
,
H. A.
, and
Elliott
,
D. M.
, 2006, “
Degeneration Affects the Fiber Reorientation of Human Annulus Fibrosus Under Tensile Load
,”
J. Biomech.
0021-9290,
39
(
8
), pp.
1410
1418
.
4.
Wagner
,
D. R.
, and
Lotz
,
J. C.
, 2004, “
Theoretical Model and Experimental Results for the Nonlinear Elastic Behavior of Human Annulus Fibrosus
,”
J. Orthop. Res.
0736-0266,
22
(
4
), pp.
901
909
.
5.
Acaroglu
,
E. R.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
, 1995, “
Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Anulus Fibrosus
,”
Spine
0362-2436,
20
(
24
), pp.
2690
2701
.
6.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Schulze-Bauer
,
C. A. J.
, 2001, “
An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analysis of Intact Lumbar Disc Bodies
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
4
, pp.
209
229
.
7.
Guerin
,
H. L.
, and
Elliott
,
D. M.
, 2007, “
Quantifying the Contributions of Structure to Annulus Fibrosus Mechanical Function Using a Nonlinear, Anisotropic, Hyperelastic Model
,”
J. Orthop. Res.
0736-0266,
25
(
4
), pp.
508
516
.
8.
Antoniou
,
J.
,
Steffen
,
T.
,
Nelson
,
F.
,
Winterbottom
,
N.
,
Hollander
,
A. P.
,
Poole
,
R. A.
,
Aebi
,
M.
, and
Alini
,
M.
, 1996, “
The Human Lumbar Intervertebral Disc: Evidence for Changes in the Biosynthesis and Denaturation of the Extracellular Matrix With Growth, Maturation, Ageing, and Degeneration
,”
J. Clin. Invest.
0021-9738,
98
(
4
), pp.
996
1003
.
9.
Eyre
,
D. R.
, 1979, “
Biochemistry of the Intervertebral Disc
,”
Int. Rev. Connect Tissue Res.
0074-767X,
8
, pp.
227
291
.
10.
Le Maitre
,
C. L.
,
Pockert
,
A.
,
Buttle
,
D. J.
,
Freemont
,
A. J.
, and
Hoyland
,
J. A.
, 2007, “
Matrix Synthesis and Degradation in Human Intervertebral Disc Degeneration
,”
Biochem. Soc. Trans.
0300-5127,
35
(
Pt 4
), pp.
652
655
.
11.
Nerlich
,
A. G.
,
Boos
,
N.
,
Wiest
,
I.
, and
Aebi
,
M.
, 1998, “
Immunolocalization of Major Interstitial Collagen Types in Human Lumbar Intervertebral Discs of Various Ages
,”
Virchows Arch.
0945-6317,
432
(
1
), pp.
67
76
.
12.
Iatridis
,
J. C.
,
Kumar
,
S.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
, 1999, “
Shear Mechanical Properties of Human Lumbar Annulus Fibrosus
,”
J. Orthop. Res.
0736-0266,
17
(
5
), pp.
732
737
.
13.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
, 1998, “
Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression
,”
J. Biomech.
0021-9290,
31
(
6
), pp.
535
544
.
14.
Franchi
,
M.
,
Fini
,
M.
,
Quaranta
,
M.
,
De Pasquale
,
V.
,
Raspanti
,
M.
,
Giavaresi
,
G.
,
Ottani
,
V.
, and
Ruggeri
,
A.
, 2007, “
Crimp Morphology in Relaxed and Stretched Rat Achilles Tendon
,”
J. Anat.
0021-8782,
210
(
1
), pp.
1
7
.
15.
Hansen
,
K. A.
,
Weiss
,
J. A.
, and
Barton
,
J. K.
, 2002, “
Recruitment of Tendon Crimp With Applied Tensile Strain
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
1
), pp.
72
77
.
16.
Viidik
,
A.
, 1973, “
Functional Properties of Collagenous Tissues
,”
Int. Rev. Connect Tissue Res.
0074-767X,
6
, pp.
127
215
.
17.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2004, “
Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
264
275
.
18.
Wu
,
H. C.
, and
Yao
,
R. F.
, 1976, “
Mechanical Behavior of the Human Annulus Fibrosus
,”
J. Biomech.
0021-9290,
9
(
1
), pp.
1
7
.
19.
Cancer
,
F. C.
,
Guo
,
Z.
,
Moran
,
B.
,
Bažant
,
Z. P.
, and
Carol
,
I.
, 2007, “
Hyperelastic Anisotropic Microplane Constitutive Model for Annulus Fibrosus
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
632
641
.
20.
Peng
,
X. Q.
,
Guo
,
Z. Y.
, and
Moran
,
B.
, 2006, “
An Anisotropic Hyperelastic Constitutive Model With Fiber-Matrix Interaction for the Human Annulus Fibrosis
,”
ASME J. Appl. Mech.
0021-8936,
73
(
5
), pp.
815
824
.
21.
Eyre
,
D. R.
,
Apon
,
S.
,
Wu
,
J. J.
,
Ericsson
,
L. H.
, and
Walsh
,
K. A.
, 1987, “
Collagen Type IX: Evidence for Covalent Linkages to Type II Collagen in Cartilage
,”
FEBS Lett.
0014-5793,
220
(
2
), pp.
337
341
.
22.
Smith
,
L. J.
, and
Fazzalari
,
N. L.
, 2006, “
Regional Variations in the Density and Arrangement of Elastic Fibres in the Anulus Fibrosus of the Human Lumbar Disc
,”
J. Anat.
0021-8782,
209
(
3
), pp.
359
367
.
23.
Yu
,
J.
,
Winlove
,
P. C.
,
Roberts
,
S.
, and
Urban
,
J. P.
, 2002, “
Elastic Fibre Organization in the Intervertebral Discs of the Bovine Tail
,”
J. Anat.
0021-8782,
201
(
6
), pp.
465
475
.
24.
Wagner
,
D. R.
,
Reiser
,
K. M.
, and
Lotz
,
J. C.
, 2006, “
Glycation Increases Human Annulus Fibrosus Stiffness in Both Experimental Measurements and Theoretical Predictions
,”
J. Biomech.
0021-9290,
39
(
6
), pp.
1021
1029
.
25.
Spencer
,
A. J. M.
, 1984, “
Constitutive Theory for Strongly Anisotropic Solids
,”
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
,
A. J. M.
Spencer
, ed.,
Springer-Verlag
,
New York
, pp.
1
32
.
26.
Elliott
,
D. M.
, and
Setton
,
L. A.
, 2000, “
A Linear Material Model for Fiber-Induced Anisotropy of the Anulus Fibrosus
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
2
), pp.
173
179
.
27.
Klisch
,
S. M.
, and
Lotz
,
J. C.
, 1999, “
Application of a Fiber-Reinforced Continuum Theory to Multiple Deformations of the Annulus Fibrosus
,”
J. Biomech.
0021-9290,
32
(
10
), pp.
1027
1036
.
28.
Nerurkar
,
N. L.
,
Mauck
,
R. L.
, and
Elliott
,
D. M.
, 2008, “
ISSLS Prize Winner: Integrating Theoretical and Experimental Methods for Functional Tissue Engineering of the Annulus Fibrosus
,”
Spine
0362-2436,
33
, pp.
2691
2701
.
29.
Thompson
,
J. P.
,
Pearce
,
R. H.
,
Schechter
,
M. T.
,
Adams
,
M. E.
,
Tsang
,
I. K.
, and
Bishop
,
P. B.
, 1990, “
Preliminary Evaluation of a Scheme for Grading the Gross Morphology of the Human Intervertebral Disc
,”
Spine
0362-2436,
15
(
5
), pp.
411
415
.
30.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
West Sussex, England
.
31.
Weiss
,
J. A.
,
Gardiner
,
J. C.
, and
Bonifasi-Lista
,
C.
, 2002, “
Ligament Material Behavior is Nonlinear, Viscoelastic and Rate-Independent Under Shear Loading
,”
J. Biomech.
0021-9290,
35
(
7
), pp.
943
950
.
32.
Bland
,
J. M.
, and
Altman
,
D. G.
, 1986, “
Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement
,”
Lancet
0140-6736,
1
(
8476
), pp.
307
310
.
33.
Aspden
,
R. M.
, 2005, “
Agreement Between Two Experimental Measures or Between Experiment and Theory
,”
J. Biomech.
0021-9290,
38
(
10
), pp.
2136
2137
.
34.
Beck
,
E. G.
,
Borneff
,
J.
,
Grun
,
L.
,
Gundermann
,
K. O.
,
Kanz
,
E.
,
Lammers
,
T.
,
Mulhens
,
K.
,
Primavesi
,
C. A.
,
Schmidt
,
B.
,
Schubert
,
R.
,
Weinhold
,
E.
, and
Werner
,
H. P.
, 1977, “
Recommendations for the Testing and the Evaluation of the Efficacy of Chemical Disinfectant Procedures (Author’s Transl)
,”
Zentralbl Bakteriol [Orig B]
,
165
(
3–4
), pp.
335
380
.
35.
Guerin
,
H. A.
, and
Elliott
,
D. M.
, 2005, “
The Role of Fiber-Matrix Interactions in a Nonlinear Fiber-Reinforced Strain Energy Model of Tendon
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
2
), pp.
345
350
.
36.
Sarver
,
J. J.
,
Robinson
,
P. S.
, and
Elliott
,
D. M.
, 2003, “
Methods for Quasi-Linear Viscoelastic Modeling of Soft Tissue: Application to Incremental Stress-Relaxation Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
5
), pp.
754
758
.
37.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Iatridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
, 1994, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Anulus Fibrosus
,”
Spine
0362-2436,
19
(
12
), pp.
1310
1319
.
38.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
, 1997, “
Radial Tensile Properties of the Lumbar Annulus Fibrosus Are Site and Degeneration Dependent
,”
J. Orthop. Res.
0736-0266,
15
(
6
), pp.
814
819
.
39.
Smith
,
L. J.
,
Byers
,
S.
,
Costi
,
J. J.
, and
Fazzalari
,
N. L.
, 2008, “
Elastic Fibers Enhance the Mechanical Integrity of the Human Lumbar Anulus Fibrosus in the Radial Direction
,”
Ann. Biomed. Eng.
0090-6964,
36
(
2
), pp.
214
223
.
40.
Cloyd
,
J. M.
, and
Elliott
,
D. M.
, 2007, “
Elastin Content Correlates With Human Disc Degeneration in the Anulus Fibrosus and Nucleus Pulposus
,”
Spine
0362-2436,
32
(
17
), pp.
1826
1831
.
41.
Yu
,
J.
,
Tirlapur
,
U.
,
Fairbank
,
J.
,
Handford
,
P.
,
Roberts
,
S.
,
Winlove
,
C. P.
,
Cui
,
Z.
, and
Urban
,
J.
, 2007, “
Microfibrils, Elastin Fibres and Collagen Fibres in the Human Intervertebral Disc and Bovine Tail Disc
,”
J. Anat.
0021-8782,
210
(
4
), pp.
460
471
.
42.
Ebara
,
S.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
, 1996, “
Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus
,”
Spine
0362-2436,
21
(
4
), pp.
452
461
.
43.
Skrzypiec
,
D.
,
Tarala
,
M.
,
Pollintine
,
P.
,
Dolan
,
P.
, and
Adams
,
M. A.
, 2007, “
When Are Intervertebral Discs Stronger Than Their Adjacent Vertebrae?
,”
Spine
0362-2436,
32
(
22
), pp.
2455
2461
.
44.
Adams
,
M. A.
, and
Green
,
T. P.
, 1993, “
Tensile Properties of the Annulus Fibrosus
,”
Eur. Spine J.
0940-6719,
2
(
4
), pp.
203
208
.
You do not currently have access to this content.