This study utilizes a finite element model to characterize the transendothelial transport through overlapping endothelial cells in primary lymphatics during the uptake of interstitial fluid. The computational model is built upon the analytical model of these junctions created by Mendoza and Schmid-Schonbein (2003, “A Model for Mechanics of Primary Lymphatic Valves,” J. Biomed. Eng., 125, pp. 407–414). The goal of the present study is to investigate how adding more sophisticated and physiologically representative biomechanics affects the model’s prediction of fluid uptake. These changes include incorporating a porous domain to represent interstitial space, accounting for finite deformation of the deflecting endothelial cell, and utilizing an arbitrary Lagrangian–Eulerian algorithm to account for interacting and nonlinear mechanics of the junctions. First, the present model is compared with the analytical model in order to understand its effects on parameters such as cell deflection, pressure distribution, and velocity profile of the fluid entering the lumen. Without accounting for the porous nature of the interstitium, the computational model predicts greater cell deflection and consequently higher lymph velocities and flow rates than the analytical model. However, incorporating the porous domain attenuates the cell deflection and flow rate to values below that predicted by the analytical model for a given transmural pressure. Second, the present model incorporates recent experimental data for parameters such as lymph viscosity, transmural pressure measurements, and others to evaluate the ability of these junctions to act as unidirectional valves. The volume of flow through the valve is calculated to be 0.114nL/μm per cycle for a transmural pressure varying between 8.0 mm Hg and −1.0 mm Hg at 0.4 Hz. Though experimental data for the absorption of lymph through these endothelial junctions are scarce, several measurements of lymph velocity and flow rates are cited to validate the present model.

1.
Alitalo
,
K.
,
Tammela
,
T.
,
Petrova
,
T.
, 2005, “
Lymphangiogenesis in Development and Human Disease
,”
Nature
0028-0836,
438
(
15 December
), pp.
946
953
.
2.
Mendoza
,
E.
, and
Schmid-Schonbein
,
G.
, 2003, “
A Model for Mechanics of Primary Lymphatic Valves
,”
J. Biomed. Eng.
0141-5425,
125
, pp.
407
414
.
3.
Trzewik
,
J.
,
Mallipattu
,
S. R.
,
Artmann
,
G. M.
,
DeLano
,
F. A.
, and
Schmid-Schonbein
,
G. W.
, 2001, “
Evidence for a Second Valve System in Lymphatics: Endothelial Microvalves
,”
FASEB J.
0892-6638,
15
, pp.
1711
1717
.
4.
Skobe
,
M.
, and
Detmar
,
M.
, 2000, “
Structure, Function, and Molecular Control of the Skin Lymphatic System
,”
J. Investig. Dermatol. Symp. Proc.
1087-0024,
5
, pp.
14
19
.
5.
Leak
,
L.
, 1976, “
The Structure of Lymphatic Capillaries in Lymph Formation
,”
Fed. Proc.
0014-9446,
35
, pp.
1863
1871
.
6.
Leak
,
L.
, 1971, “
Studies on the Permeability of Lymphatic Capillaries
,”
J. Cell Biol.
0021-9525,
50
, pp.
300
323
.
7.
Grimaldi
,
A.
,
Moriondo
,
A.
,
Sciacca
,
L
.
,
Guidali
,
M.
,
Tettamanti
,
G.
, and
Negrini
,
D.
, 2006, “
Functional Arrangement of Rat Diaphragmatic Initial Lymphatic Network
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
291
, pp.
H876
H885
.
8.
Pepper
,
M.
, and
Skobe
,
M.
, 2003, “
Lymphatic Endothelium: Morphological, Molecular, and Functional Properties
,”
J. Cell Biol.
0021-9525,
163
(
2
), pp.
209
213
.
9.
Barsky
,
S. H.
,
Baker
,
A.
,
Siegal
,
G. P.
,
Togo
,
S.
, and
Liotta
,
L. A.
, 1983, “
Use of Anti-Basement Membrane Antibodies to Distinguish Blood Vessel Capillaries From Lymphatic Capillaries
,”
Am. J. Surg. Pathol.
0147-5185,
7
(
7
), pp.
667
677
.
10.
Moriondo
,
A.
,
Mukenge
,
S.
, and
Negrini
,
D.
, 2005, “
Transmural Pressure in Rat Initial Subpleural Lymphatics During Spontaneous or Mechanical Variation
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
289
, pp.
H263
H269
.
11.
Durlofsky
,
L.
, and
Brady
,
J.
, 1987, “
Analysis of the Brinkman Equation as a Model for Flow Through Porous Media
,”
Phys. Fluids
1070-6631,
30
(
11
), pp.
3329
3341
.
12.
Butler
,
S. L.
, and
Kohles
,
R. J.
, 1997, “
Interstitial Fluid Flow in Tendons or Ligaments: A Porous Medium Finite Element Simulation
,”
Med. Biol. Eng. Comput.
0140-0118,
35
, pp.
742
746
.
13.
Scheidegger
,
A.
, 1974,
The Physics of Flow Through Porous Media
,
3rd ed.
,
University of Toronto Press
,
Toronto, Canada
.
14.
COMSOL AB
, 2008, COMSOL Multiphysics v.3.3a, Structural Mechanics Module.
15.
Donea
,
J.
,
Huerta
,
A.
,
Ponthot
,
J.
, and
Rodriguez-Ferran
,
A.
, 2004, “
Arbitrary Lagrangian-Eulerian Methods
,”
Encyclopedia of Computational Mechanics
,
E.
Stein
,
R.
de Borst
, and
T.
Hughes
, eds.,
Wiley
,
New York
, Vol.
1
.
16.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
, 2000,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
New York
.
17.
Dettmer
,
W.
, and
Peric
,
D.
, 2006, “
A Computational Framework for Fluid–Structure Interaction: Finite Element Formulation and Applications
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
5754
5779
.
18.
Farhat
,
C.
,
Lesoinne
,
M.
, and
Le Tallec
,
P.
, 1998, “
Load and Motion Transfer Algorithms for Fluid/Structure Interaction Problems With Non-Matching Discrete Interfaces: Momentum and Energy Conservation, Optimal Discretization and Application to Aeroelasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
157
, pp.
95
114
.
19.
Winslow
,
A.
, 1990, “
Equipotential Zoning of the Interior of a Three-Dimensional Mesh
,” Lawrence Radiation Laboratory, Paper No. UCRL-7312.
20.
Kuhl
,
E.
,
Hulshoff
,
S.
, and
de Borst
,
R.
, 2003, “
An Arbitrary Lagrangian Eulerian Finite-Element Approach for Fluid-Structure Interaction Phenomena
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
, pp.
117
142
.
21.
Dixon
,
J.
,
Greiner
,
S.
,
Goshev
,
A.
, and
Cote
,
G.
, 2006, “
Lymph Flow, Shear Stress, and Lymphocyte Velocity in Rat Mesenteric Prenodal Lymphatics
,”
Microcirculation (Philadelphia)
1073-9688,
13
, pp.
597
610
.
22.
Satcher
,
R. L.
, and
Dewey
,
C. F.
, 1996, “
Theoretical Estimates of Mechanical Properties of the Endothelial Cell Cytoskeleton
,”
Biophys. J.
0006-3495,
71
, pp.
109
118
.
23.
Galbraith
,
C. G.
,
et al.
, 1998, “
Shear Stress Induces Spatial Reorganization of the Endothelial Cell Cytoskeleton
,”
Cell Motil. Cytoskeleton
0886-1544,
40
, pp.
317
330
.
24.
McCue
,
S.
,
et al.
, 2004, “
Shear-Induced Reorganization of Endothelial Cell Cytoskeleton and Adhesion Complexes
,”
Trends Cardiovasc. Med.
1050-1738,
14
(
4
), pp.
143
151
.
25.
Moriondo
,
A.
,
et al.
, 2008, “
Kinetics of Fluid Flux in the Rat Diaphragmatic Submesothelial Lymphatic Lacunae
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
295
, pp.
H1182
H1190
.
26.
Swartz
,
M.
,
Berk
,
D.
, and
Jain
,
R.
, 1996, “
Transport in Lymphatic Capillaries. I. Macroscopic Measurements Using Residence Time Distribution Theory
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
270
, pp.
H324
H329
.
27.
Berk
,
D.
,
Swartz
,
M.
, and
Jain
,
R.
, 1996, “
Transport in Lymphatic Capillaries. II. Microscopic Velocity Measurement With Fluorescence Photobleaching
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
270
, pp.
H330
H337
.
28.
Swartz
,
M.
,
Kaipainen
,
A.
,
Netti
,
P.
,
Brekken
,
C.
,
Boucher
,
Y.
, and
Grodzinsky
,
A.
, 1999, “
Mechanics of Interstitial-Lymphatic Fluid Transport: Theoretical Foundation and Experimental Validation
,”
J. Biomech.
0021-9290,
32
, pp.
1297
1307
.
You do not currently have access to this content.