Classical finite element (FE) models can estimate vertebral stiffness and strength with much lower computational costs than μFE analyses, but the accuracy of these models rely on calibrated material properties that are not necessarily consistent with experimental results. In general, trabecular bone material properties are scaled with computer tomography (CT) density alone, without accounting for local variations in anisotropy or micro-architecture. Moreover, the cortex is often omitted or assigned with a constant thickness. In this work, voxel FE models, as well as surface-based homogenized FE models with topologically-conformed geometry and assigned with experimentally validated properties for bone, were developed from a series of 12 specimens tested up to failure. The effects of changing from a digital mesh to a smooth mesh, including a cortex of variable thickness and/or including heterogeneous trabecular fabric, were investigated. In each case, FE predictions of vertebral stiffness and strength were compared with the experimental gold-standard, and changes in elastic strain energy density and damage distributions were reported. The results showed that a smooth mesh effectively removed zones of artificial damage locations occurring in the ragged edges of the digital mesh. Adding an explicit cortex stiffened and strengthened the models, unloading the trabecular centrum while increasing the correlations to experimental stiffness and strength. Further addition of heterogeneous fabric improved the correlations to stiffness (R2=0.72) and strength (R2=0.89) and moved the damage locations closer to the vertebral endplates, following the local trabecular orientations. It was furthermore demonstrated that predictions of vertebral stiffness and strength of homogenized FE models with topologically-conformed cortical shell and heterogeneous trabecular fabric correlated well with experimental measurements, after assigning purely experimental data for bone without further calibration of material laws at the macroscale of bone. This study successfully demonstrated the limitations of current classical FE methods and provided valuable insights into the damage mechanisms of vertebral bodies.

1.
Silverman
,
S. L.
, 1992, “
The Clinical Consequences of Vertebral Compression Fracture
,”
Bone
,
13
, pp.
S27
S31
. 8756-3282
2.
Old
,
J. L.
, and
Calvert
,
M.
, 2004, “
Vertebral Compression Fractures in the Elderly
,”
Am. Fam. Physician
0002-838X,
69
(
1
), pp.
111
116
.
3.
Papaioannou
,
A.
,
Watts
,
N. B.
,
Kendler
,
D. L.
,
Yuen
,
C. K.
,
Adachi
,
J. D.
, and
Ferko
,
N.
, 2002, “
Diagnosis and Management of Vertebral Fractures in Elderly Adults
,”
Am. J. Med.
0002-9343,
113
(
3
), pp.
220
228
.
4.
Ismail
,
A. A.
,
Cooper
,
C.
,
Felsenberg
,
D.
,
Varlow
,
J.
,
Kanis
,
J. A.
,
Silman
,
A. J.
, and
O’Neill
,
T. W.
, 1999, “
Number and Type of Vertebral Deformities: Epidemiological Characteristics and Relation to Back Pain and Height Loss. European Vertebral Osteoporosis Study Group
,”
Osteoporosis Int.
0937-941X,
9
(
3
), pp.
206
213
.
5.
Crawford
,
R. P.
,
Cann
,
C. E.
, and
Keaveny
,
T. M.
, 2003, “
Finite Element Models Predict In Vitro Vertebral Body Compressive Strength Better Than Quantitative Computed Tomography
,”
Bone
,
33
(
4
), pp.
744
750
. 8756-3282
6.
Sun
,
K.
and
Liebschner
,
M. A. K.
, 2004, “
Biomechanics of Prophylactic Vertebral Reinforcement
,”
Spine
0362-2436,
29
(
13
), pp.
1428
1435
.
7.
Keaveny
,
T. M.
,
Donley
,
D. W.
,
Hoffmann
,
P. F.
,
Mitlak
,
B. H.
,
Glass
,
E. V.
, and
Martin
,
J. A. S.
, 2007, “
Effects of Teriparatide and Alendronate on Vertebral Strength as Assessed by Finite Element Modeling of QCT Scans in Women With Osteoporosis
,”
J. Bone Miner. Res.
0884-0431,
22
(
1
), pp.
149
157
.
8.
Graeff
,
C.
,
Chevalier
,
Y.
,
Charlebois
,
M.
,
Varga
,
P.
,
Pahr
,
D.
,
Nickelsen
,
T. N.
,
Morlock
,
M. M.
,
Glüer
,
C.-C.
, and
Zysset
,
P. K.
, 2009, “
Improvements in Vertebral Body Strength Under Teriparatide Treatment Assessed In Vivo by Finite Element Analysis: Results From the EUROFORS Study
,”
J. Bone Miner. Res.
0884-0431, published online May 6, 2009 (Epub ahead of print).
9.
Silva
,
M. J.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
, 1998, “
Computed Tomography-Based Finite Element Analysis Predicts Failure Loads and Fracture Patterns for Vertebral Sections
,”
J. Orthop. Res.
0736-0266,
16
(
3
), pp.
300
308
.
10.
Martin
,
H.
,
Werner
,
J.
,
Andresen
,
R.
,
Schober
,
H. C.
, and
Schmitz
,
K. P.
, 1998, “
Non-Invasive Assessment of Stiffness and Failure Load of Human Vertebrae From CT-Data
,”
Biomed. Tech.
0013-5585,
43
(
4
), pp.
82
88
.
11.
Liebschner
,
M. A. K.
,
Kopperdahl
,
D. L.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
, 2003, “
Finite Element Modeling of the Human Thoracolumbar Spine
,”
Spine
0362-2436,
28
(
6
), pp.
559
565
.
12.
Imai
,
K.
,
Ohnishi
,
I.
,
Bessho
,
M.
, and
Nakamura
,
K.
, 2006, “
Nonlinear Finite Element Model Predicts Vertebral Bone Strength and Fracture Site
,”
Spine
0362-2436,
31
(
16
), pp.
1789
1794
.
13.
Jones
,
A. C.
, and
Wilcox
,
R. K.
, 2007, “
Assessment of Factors Influencing Finite Element Vertebral Model Predictions
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
6
), pp.
898
903
.
14.
Chevalier
,
Y.
,
Charlebois
,
M.
,
Pahr
,
D.
,
Varga
,
P.
,
Heini
,
P.
,
Schneider
,
E.
, and
Zysset
,
P.
, 2008, “
A Patient-Specific Finite Element Methodology to Predict Damage Accumulation in Vertebral Bodies Under Axial Compression, Sagittal Flexion and Combined Loads
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
11
, pp.
477
487
.
15.
Chevalier
,
Y.
,
Pahr
,
D.
,
Charlebois
,
M.
,
Heini
,
P.
,
Schneider
,
E.
, and
Zysset
,
P.
, 2008, “
Cement Distribution, Volume, and Compliance in Vertebroplasty: Some Answers From an Anatomy-Based Nonlinear Finite Element Study
,”
Spine
0362-2436,
33
(
16
), pp.
1722
1730
.
16.
Crawford
,
R. P.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
, 2003, “
Quantitative Computed Tomography-Based Finite Element Models of the Human Lumbar Vertebral Body: Effect of Element Size on Stiffness, Damage, and Fracture Strength Predictions
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
4
), pp.
434
438
.
17.
Buckley
,
J. M.
,
Cheng
,
L.
,
Loo
,
K.
,
Slyfield
,
C.
, and
Xu
,
Z.
, 2007, “
Quantitative Computed Tomography-Based Predictions of Vertebral Strength in Anterior Bending
,”
Spine
0362-2436,
32
(
9
), pp.
1019
1027
.
18.
Imai
,
K.
,
Ohnishi
,
I.
,
Yamamoto
,
S.
, and
Nakamura
,
K.
, 2008, “
In Vivo Assessment of Lumbar Vertebral Strength in Elderly Women Using Computed Tomography-Based Nonlinear Finite Element Model
,”
Spine
0362-2436,
33
(
1
), pp.
27
32
.
19.
Silva
,
M. J.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
, 1997, “
Load Sharing Between the Shell and Centrum in the Lumbar Vertebral Body
,”
Spine
0362-2436,
22
(
2
), pp.
140
150
.
20.
Wijayathunga
,
V. N.
,
Jones
,
A. C.
,
Oakland
,
R. J.
,
Furtado
,
N. R.
,
Hall
,
R. M.
, and
Wilcox
,
R. K.
, 2008, “
Development of Specimen-Specific Finite Element Models of Human Vertebrae for the Analysis of Vertebroplasty
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
222
(
2
), pp.
221
228
.
21.
Eswaran
,
S. K.
,
Gupta
,
A.
,
Adams
,
M. F.
, and
Keaveny
,
T. M.
, 2006, “
Cortical and Trabecular Load Sharing in the Human Vertebral Body
,”
J. Bone Miner. Res.
0884-0431,
21
(
2
), pp.
307
314
.
22.
Ritzel
,
H.
,
Amling
,
M.
,
Pösl
,
M.
,
Hahn
,
M.
, and
Delling
,
G.
, 1997, “
The Thickness of Human Vertebral Cortical Bone and Its Changes in Aging and Osteoporosis: A Histomorphometric Analysis of the Complete Spinal Column From Thirty-Seven Autopsy Specimens
,”
J. Bone Miner. Res.
0884-0431,
12
(
1
), pp.
89
95
.
23.
Overaker
,
D. W.
,
Langrana
,
N. A.
, and
Cuitio
,
A. M.
, 1999, “
Finite Element Analysis of Vertebral Body Mechanics With a Nonlinear Microstructural Model for the Trabecular Core
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
5
), pp.
542
550
.
24.
Hulme
,
P. A.
,
Boyd
,
S. K.
, and
Ferguson
,
S. J.
, 2007, “
Regional Variation in Vertebral Bone Morphology and Its Contribution to Vertebral Fracture Strength
,”
Bone
,
41
(
6
), pp.
946
957
. 0954-4119
25.
Stauber
,
M.
, and
Müller
,
R.
, 2006, “
Age-Related Changes in Trabecular Bone Microstructures: Global and Local Morphometry
,”
Osteoporosis Int.
0937-941X,
17
(
4
), pp.
616
626
.
26.
Ciarelli
,
T. E.
,
Fyhrie
,
D. P.
, and
Parfitt
,
A. M.
, 2003, “
Effects of Vertebral Bone Fragility and Bone Formation Rate on the Mineralization Levels of Cancellous Bone From White Females
,”
Bone
,
32
(
3
), pp.
311
315
. 8756-3282
27.
Legrand
,
E.
,
Chappard
,
D.
,
Pascaretti
,
C.
,
Duquenne
,
M.
,
Krebs
,
S.
,
Rohmer
,
V.
,
Basle
,
M. F.
, and
Audran
,
M.
, 2000, “
Trabecular Bone Microarchitecture, Bone Mineral Density, and Vertebral Fractures in Male Osteoporosis
,”
J. Bone Miner. Res.
0884-0431,
15
(
1
), pp.
13
19
.
28.
Homminga
,
J.
, and
Van-Rietbergen
,
B.
,
Lochmüller
,
E. M.
,
Weinans
,
H.
,
Eckstein
,
F.
, and
Huiskes
,
R.
, 2004, “
The Osteoporotic Vertebral Structure Is Well Adapted to the Loads of Daily Life, but Not to Infrequent “Error” Loads
,”
Bone
,
34
(
3
), pp.
510
516
. 0954-4119
29.
Pahr
,
D. H.
, and
Zysset
,
P. K.
, 2009, “
A Comparison of Enhanced Continuum FE With Micro FE Models of Human Vertebral Bodies
,”
J. Biomech.
0021-9290,
42
(
4
), pp.
455
462
.
30.
Matsuura
,
M.
, and
Eckstein
,
F.
,
Lochmüller
,
E. -M.
, and
Zysset
,
P. K.
, 2008, “
The Role of Fabric in the Quasi-Static Compressive Mechanical Properties of Human Trabecular Bone From Various Anatomical Locations
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
(
1
), pp.
27
42
.
31.
Eswaran
,
S. K.
,
Gupta
,
A.
, and
Keaveny
,
T. M.
, 2007, “
Locations of Bone Tissue at High Risk of Initial Failure During Compressive Loading of the Human Vertebral Body
,”
Bone
,
41
(
4
), pp.
733
739
. 0954-4119
32.
Guldberg
,
R. E.
,
Hollister
,
S. J.
, and
Charras
,
G. T.
, 1998, “
The Accuracy of Digital Image-Based Finite Element Models
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
2
), pp.
289
295
.
33.
Niebur
,
G. L.
,
Yuen
,
J. C.
,
Hsia
,
A. C.
, and
Keaveny
,
T. M.
, 1999, “
Convergence Behavior of High-Resolution Finite Element Models of Trabecular Bone
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
6
), pp.
629
635
.
34.
Rincón-Kohli
,
L.
, and
Zysset
,
P.
, 2009, “
Multi-Axial Mechanical Properties of Human Trabecular Bone
,”
Biomech. Model. Mechanobiol.
1617-7959,
8
, pp.
195
208
.
35.
Garcia
,
D.
,
Zysset
,
P.
,
Charlebois
,
M.
, and
Curnier
,
A.
, 2009, “
A Three-Dimensional Elastic Plastic Damage Constitutive Law for Bone Tissue
,”
Biomech. Model. Mechanobiol.
1617-7959,
8
, pp.
149
165
.
36.
Pahr
,
D. H.
, and
Zysset
,
P. K.
, 2009, “
From High-Resolution CT Data to Finite Element Models: Development of an Integrated Modular Framework
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
12
(
1
), pp.
45
57
.
37.
CGAL, Computational Geometry Algorithms Library
,” http://www.cgal.orghttp://www.cgal.org
38.
Geuzaine
,
C.
, and
Remacle
,
J.
, 2009, “
Gmsh Reference Manual. Gmsh: A Three-Dimensional Finite Element Mesh Generator With Built-in Pre- and Post-Processing Facilities
,” (http://www.geuz.org/gmsh/http://www.geuz.org/gmsh/).
39.
Lewis
,
G.
, 1997, “
Properties of Acrylic Bone Cement: State of the Art Review
,”
J. Biomed. Mater. Res.
0021-9304,
38
(
2
), pp.
155
182
.
40.
Whitehouse
,
W. J.
, 1974, “
The Quantitative Morphology of Anisotropic Trabecular Bone
,”
J. Microsc.
0022-2720,
101
(
Pt 2
), pp.
153
168
.
41.
Varga
,
P.
, and
Zysset
,
P.
, 2007, “
Sampling Sphere Distribution: A Novel Method to Quantify Structural Anisotropy of Trabecular Bone in Unsegmented Images
,”
Proceedings of the ECCOMAS Thematic Conference on Modelling of Heterogeneous Materials
, Prague, Czech Republic, Jun. 25–27.
42.
Zysset
,
P.
, and
Curnier
,
A.
, 1995, “
An Alternative Model for Anisotropic Elasticity Based on Fabric Tensors
,”
Mech. Mater.
0167-6636,
21
(
4
), pp.
243
250
.
43.
Mazza
,
G.
,
Franzoso
,
G.
,
Pretterklieber
,
M.
, and
Zysset
,
P.
, 2008, “
Anisotropic Elastic Properties of Vertebral Compact Bone Measured by Microindentation
,”
16th Congress of the European Society of Biomechanics
, July 6–9, Lucerne, Switzerland.
44.
Hengsberger
,
S.
,
Kulik
,
A.
, and
Zysset
,
P.
, 2002, “
Nanoindentation Discriminates the Elastic Properties of Individual Human Bone Lamellae Under Dry and Physiological Conditions
,”
Bone
,
30
(
1
), pp.
178
184
. 8756-3282
45.
Garcia
,
D.
, 2006, “
Elastic Plastic Damage Constitutive Laws for Cortical Bone
,” Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne.
46.
MacNeil
,
J. A.
, and
Boyd
,
S. K.
, 2007, “
Accuracy of High-Resolution Peripheral Quantitative Computed Tomography for Measurement of Bone Quality
,”
Med. Eng. Phys.
1350-4533,
29
(
10
), pp.
1096
1105
.
47.
Baker
,
A.
,
Mason
,
Z.
,
Hussein
,
A.
, and
Morgan
,
E.
, 2009, “
Quantitative Image-Guided Failure Analysis of the Human Vertebra (Poster No. 711)
,”
Proceedings of the 55th Annual Meeting of the Orthopaedic Research Society
, Las Vegas, NV, Feb. 22–25.
48.
Roy
,
M. E.
,
Rho
,
J. Y.
,
Tsui
,
T. Y.
,
Evans
,
N. D.
, and
Pharr
,
G. M.
, 1999, “
Mechanical and Morphological Variation of the Human Lumbar Vertebral Cortical and Trabecular Bone
,”
J. Biomed. Mater. Res.
0021-9304,
44
(
2
), pp.
191
197
.
49.
Hayes
,
W. C.
, and
Carter
,
D. R.
, 1976, “
Postyield Behavior of Subchondral Trabecular Bone
,”
J. Biomed. Mater. Res.
0021-9304,
10
(
4
), pp.
537
544
.
50.
Gibson
,
L.
, and
Ashby
,
M.
, 1997,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, England
.
51.
Varga
,
P.
,
Baumbach
,
S.
,
Pahr
,
D.
, and
Zysset
,
P.
, 2008, “
Validation of an Anatomy-Specific Finite Element Model of Colle’s Fracture
,”
J. Biomech.
0021-9290,
41
, p.
S456
.
52.
Pahr
,
D. H.
, and
Zysset
,
P. K.
, 2008, “
Influence of Boundary Conditions on Computed Apparent Elastic Properties of Cancellous Bone
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
(
6
), pp.
463
476
.
53.
van Rietbergen
,
B.
,
Majumdar
,
S.
,
Pistoia
,
W.
,
Newitt
,
D. C.
,
Kothari
,
M.
,
Laib
,
A.
, and
Rüegsegger
,
P.
, 1998, “
Assessment of Cancellous Bone Mechanical Properties From Micro-FE Models Based on Micro-CT, pQCT and MR Images
,”
Technol. Health Care
0928-7329,
6
(
5–6
), pp.
413
420
.
You do not currently have access to this content.