The incidence of ligament injury has recently been estimated at 400,000/year. The preferred treatment is reconstruction using an allograft, but outcomes are limited by donor availability, biomechanical incompatibility, and immune rejection. The creation of an engineered ligament in vitro solely from patient bone marrow stromal cells (has the potential to greatly enhance outcomes in knee reconstructions. Our laboratory has developed a scaffoldless method to engineer three-dimensional (3D) ligament and bone constructs from rat bone marrow stem cells in vitro. Coculture of these two engineered constructs results in a 3D bone-ligament-bone (BLB) construct with viable entheses, which was successfully used for medial collateral ligament (MCL) replacement in a rat model. 1 month and 2 month implantations were applied to the engineered BLBs. Implantation of 3D BLBs in a MCL replacement application demonstrated that our in vitro engineered tissues grew and remodeled quickly in vivo to an advanced phenotype and partially restored function of the knee. The explanted 3D BLB ligament region stained positively for type I collagen and elastin and was well vascularized after 1 and 2 months in vivo. Tangent moduli of the ligament portion of the 3D BLB 1 month explants increased by a factor of 2.4 over in vitro controls, to a value equivalent to those observed in 14-day-old neonatal rat MCLs. The 3D BLB 1 month explants also exhibited a functionally graded response that closely matched native MCL inhomogeneity, indicating the constructs functionally adapted in vivo.

1.
Praemer
,
A.
,
Furner
,
S.
,
Rice
,
D. P.
, and
Kelsey
,
J. L.
, 1992,
Musculoskeletal Conditions in the United States
,
Am. Acad. Orthop. Surg.
,
1
st ed.
2.
Goh
,
J. C.-H.
,
Ouyang
,
H. -W.
,
Teoh
,
S. -H.
,
Chan
,
C. K. C.
, and
Lee
,
E. -H.
, 2003, “
Tissue-Engineering Approach to the Repair and Regeneration of Tendon and Ligaments
,”
Tissue Eng.
1076-3279,
9
, pp.
31
44
.
3.
Linda
,
G. G.
, and
Naughton
,
G.
, 2002, “
Tissue Engineering: Current Challenges and Expanding Opportunities
,”
Science
0036-8075,
295
, pp.
1009
1014
.
4.
Petrigliano
,
F. A.
,
McAllister
,
D. R.
, and
Wu
,
B. M.
, 2006, “
Tissue Engineering for Anterior Cruciate Ligament Reconstruction: A Review of Current Strategies
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
22
(
4
), pp.
441
451
.
5.
Freeman
,
J. W.
,
Woods
,
M. D.
, and
Larurencin
,
C. T.
, 2007, “
Tissue Engineering of the Anterior Cruciate Ligament Using a Braid-Twist Scaffold Design
,”
J. Biomech.
0021-9290,
40
, pp.
2029
2036
.
6.
Stoltz
,
J. F.
,
Bensoussan
,
D.
,
Decot
,
V.
,
Netter
,
P.
,
Ciree
,
A.
, and
Gillet
,
P.
, 2006, “
Cell and Tissue Engineering and Clinical Applications: An Overview
,”
Biomed. Mater. Eng.
0959-2989,
16
, pp.
S3
S18
.
7.
Van Eijk
,
F.
,
Saris
,
D. B. F.
,
Riesle
,
J.
,
Willems
,
W. J.
,
van Blitterswijk
,
C. A.
,
Verbout
,
A. J.
, and
Dhert
,
W. J. A.
, 2004, “
Tissue Engineeirng of Ligaments: A Comparison of Bone Marrow Stromal Cells, Anterior Cruciate Ligament, and Skin Fibroblasts as Cell Source
,”
Tissue Eng.
1076-3279,
10
(
5–6
), pp.
893
903
.
8.
Mascarenhas
,
R.
, and
MacDonald
,
P. B.
, 2008, “
Anterior Cruciate Ligament Reconstructions: A Look at Prosthetics—Past, Present and Possible Future
,”
McGill J. Med.
,
11
(
1
), pp.
29
37
. 1201-026X
9.
Frank
,
C. B.
, and
Jackson
,
D. W.
, 1997, “
The Science of Reconstruction of the Anterior Cruciate Ligament
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
79
, pp.
1556
1576
.
10.
Wang
,
I. -N. E.
,
Shan
,
J.
,
Choi
,
R.
,
Oh
,
S.
,
Kepler
,
C. K.
,
Chen
,
F. H.
, and
Lu
,
H. H.
, 2007,
Role of Osteoblast-Fibroblast Interactions in the Formation of the Ligament-to-Bone Interface
,”
J. Orthop. Res.
0736-0266,
25
(
12
), pp.
1609
1620
.
11.
Hairfield-Stein
,
M.
,
England
,
C.
,
Paek
,
H. J.
,
Gilbraith
,
K. B.
,
Dennis
,
R.
,
Boland
,
E.
, and
Kosnik
,
P.
, 2007, “
Development of Self-Assembled, Tissue-Engineered Ligament From Bone Marrow Stromal Cells
,”
Tissue Eng.
1076-3279,
13
(
4
), pp.
703
710
.
12.
Syed-Picard
,
F. N.
, 2006, “
Development and Characterization of Three Dimensional, Scaffold-Less Bone and Ligament Tissues Engineered From Bone Marrow Stem Cells
,” , M.S. thesis, University of Michigan, Ann Arbor, MI.
13.
Syed-Picard
,
F. N.
,
Larkin
,
L. M.
,
Shaw
,
L. M.
, and
Arruda
,
E. M.
, 2009, “
Engineered Functional Bone From Bone Marrow Stromal Cells and Their Autogenous Extra-Cellular Matrix
,”
Tissue Eng.
Part A 1076-3279,
15
(
1
), pp.
187
195
.
14.
Larkin
,
L. M.
,
van der Meulen
,
J. H.
,
Dennis
,
R. G.
, and
Kennedy
,
J. B.
, 2006, “
Functional Evaluation of Nerve-Skeletal Muscle Constructs Engineered In Vitro
,”
In Vitro Cell. Dev. Biol.
,
42
, pp.
75
82
. 0883-8364
15.
Larkin
,
L. M.
,
Calve
,
S.
,
Kostrominova
,
T. Y.
, and
Arruda
,
E. M.
, 2006, “
Structural and Functional Evaluation of Tendon-Skeletal Muscle Constructs Engineered In Vitro
,”
Tissue Eng.
1076-3279,
12
, pp.
3149
3158
.
16.
Urbanchek
,
M. S.
,
Chung
,
K. C.
,
Asato
,
H.
,
Washington
,
L. N.
, and
Kuzon
,
W. M.
, 1999, “
Rat Walking Tracks Do Not Reflect Maximal Muscle Force Capacity
,”
J. Reconstr Microsurg
0743-684X,
15
, pp.
143
149
.
17.
Alhadlaq
,
A.
, and
Mao
,
J. J.
, 2004, “
Mesenchymal Stem Cells: Isolation and Therapeutics
,”
Stem Cells Dev.
,
13
, pp.
436
448
. 1547-3287
18.
Maniatopoulos
,
C.
,
Sodek
,
J.
, and
Melcher
,
A. H.
, 1988, “
Bone Formation In Vitro by Stromal Cells Obtained From Bone Marrow of Young Adult Rats
,”
Cell Tissue Res.
0302-766X,
254
, pp.
317
330
.
19.
Deepica
,
R
.,
McCarthy
,
M.
, and
Gronowicz
,
G. A.
, 1997, “
Ascorbic Acid Alters Collagen Integrins in Bone Culture
,”
Endocrinology
0013-7227,
138
, pp.
3606
3612
.
20.
Scutt
,
A.
, and
Bertram
,
P.
, 1999, “
Basic Fibroblast Growth Factor in the Presence of Dexamethasone Stimulates Colony Formation, Expansion, and Osteoblastic Differentiation by Rat Bone Marrow Stromal Cells
,”
Calcif. Tissue Int.
0171-967X,
64
, pp.
69
77
.
21.
Noff
,
D.
,
Pitaru
,
S.
, and
Savion
,
N.
, 1989, “
Basic Fibroblast Growth Factor Enhances the Capacity of Bone Marrow Cells to Form Bone-Like Nodules In Vitro
,”
FEBS Lett.
0014-5793,
250
, pp.
619
621
.
22.
Pitaru
,
S.
,
Kotov-Emeth
,
S.
,
Noff
,
D.
,
Kaffuler
,
S.
, and
Savion
,
N.
, 1993, “
Effect of Basic Fibroblast Growth Factor on the Growth and Differentiation of Adult Stromal Bone Marrow Cells: Enhanced Development of Mineralized Bone-Like Tissue in Culture
,”
J. Bone Miner. Res.
0884-0431,
8
, pp.
919
929
.
23.
Locklin
,
R. M.
,
Oreffo
,
R. O. C.
, and
Triffitt
,
J. T.
, 1999, “
Effects of TGFbeta and bFGF on the Differentiation of Human Bone Marrow Stromal Fibroblasts
,”
Cell Biol. Int.
1065-6995,
23
, pp.
185
194
.
24.
Ronchetti
,
I. P.
,
Quaglino
,
D.
, Jr.
, and
Bergamini
,
G.
, 1996,
Ascorbic Acid and Connective Tissue, Subcellular Biochemistry, Volume 25: Ascorbic Acid: Biochemistry and Biomedical Cell Biology
,
Plenum
,
New York
, p.
249
.
25.
Martin
,
I.
,
Shastri
,
V. P.
,
Padera
,
R. F.
,
Yang
,
J.
,
Mackay
,
A. J.
,
Langer
,
R.
,
Vunjak-Novakovic
,
G.
, and
Freed
,
L. E.
, 2001, “
Selective Differentiation of Mammalian Bone Marrow Stromal Cells Cultured on Three-Dimensional Polymer Forms
,”
J. Biomed. Mater. Res.
0021-9304,
55
, pp.
229
235
.
26.
Marui
,
T.
,
Niyibizi
,
C.
,
Georgescuhi
,
C. M.
,
Kavalkovich
,
K. W.
,
Levine
,
R. E.
, and
Woo
,
S. L.-Y.
, 1997, “
Effect of Growth Factors on Matrix Synthesis by Ligament Fibroblasts
,”
J. Orthop. Res.
0736-0266,
15
, pp.
18
23
.
27.
Nauman
,
E. A.
,
Sakata
,
T.
,
Keaveny
,
T. M.
,
Halloran
,
B. P.
, and
Bikle
,
D. D.
, 2003, “
bFGF Administration Lowers the Phosphate Threshold for Mineralization in Bone Marrow Stromal Cells
,”
Calcif. Tissue Int.
0171-967X,
73
, pp.
147
152
.
28.
Marie
,
P. J.
, 2008, “
Transcription Factors Controlling Osteoblastogenesis
,”
Arch. Biochem. Biophys.
0003-9861,
473
, pp.
98
105
.
29.
Woodfin
,
A.
,
Voisin
,
M. -B.
, and
Noirshagh
,
S.
, 2007, “
PECAM-1: A Multi-Functional Molecule in Inflammation and Vascular Biology
,”
Arterioscler. Thromb. Vasc. Biol.
,
27
, p.
2514
. 1079-5642
30.
Warren
,
L. F.
,
Marshall
,
J.
, and
Girgus
,
F.
, 1974, “
The Prime Static Stabilizer of the Medial Side of the Knee
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
56-A
, pp.
665
674
.
31.
Arms
,
S.
,
Boyle
,
J.
,
Johnson
,
R.
, and
Pope
,
M.
, 1983, “
Strain Measurement in the Medial Collateral Ligament of the Human Knee: An Autopsy Study
,”
J. Biomech.
0021-9290,
16
(
7
), pp.
491
496
.
32.
Thomopoulos
,
S.
,
Marquez
,
J. P.
,
Weinberger
,
B.
,
Birman
,
V.
, and
Genin
,
G. M.
, 2006, “
Collagen Fiber Orientation at the Tendon to Bone Insertion and Its Influence on Stress Concentrations
,”
J. Biomech.
0021-9290,
39
, pp.
1842
1851
.
33.
Heimstra
,
L. A.
,
Webber
,
S.
,
MacDonald
,
P. B.
, and
Kriellaars
,
D. J.
, 2007, “
Contralateral Limb Strength Deficits After Anterior Cruciate Ligament Reconstruction Using a Hamstring Tendon Graft
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
22
, pp.
543
550
.
You do not currently have access to this content.