Aligned nanofibrous scaffolds hold tremendous potential for the engineering of dense connective tissues. These biomimetic micropatterns direct organized cell-mediated matrix deposition and can be tuned to possess nonlinear and anisotropic mechanical properties. For these scaffolds to function in vivo, however, they must either recapitulate the full dynamic mechanical range of the native tissue upon implantation or must foster cell infiltration and matrix deposition so as to enable construct maturation to meet these criteria. In our recent studies, we noted that cell infiltration into dense aligned structures is limited but could be expedited via the inclusion of a distinct rapidly eroding sacrificial component. In the present study, we sought to further the fabrication of dynamic nanofibrous constructs by combining multiple-fiber populations, each with distinct mechanical characteristics, into a single composite nanofibrous scaffold. Toward this goal, we developed a novel method for the generation of aligned electrospun composites containing rapidly eroding (PEO), moderately degradable (PLGA and PCL/PLGA), and slowly degrading (PCL) fiber populations. We evaluated the mechanical properties of these composites upon formation and with degradation in a physiologic environment. Furthermore, we employed a hyperelastic constrained-mixture model to capture the nonlinear and time-dependent properties of these scaffolds when formed as single-fiber populations or in multipolymer composites. After validating this model, we demonstrated that by carefully selecting fiber populations with differing mechanical properties and altering the relative fraction of each, a wide range of mechanical properties (and degradation characteristics) can be achieved. This advance allows for the rational design of nanofibrous scaffolds to match native tissue properties and will significantly enhance our ability to fabricate replacements for load-bearing tissues of the musculoskeletal system.

1.
Lynch
,
H. A.
,
Johannessen
,
W.
,
Wu
,
J. P.
,
Jawa
,
A.
, and
Elliott
,
D. M.
, 2003, “
Effect of Fiber Orientation and Strain Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
5
), pp.
726
31
.
2.
Setton
,
L. A.
,
Guilak
,
F.
,
Hsu
,
E. W.
, and
Vail
,
T. P.
, 1999, “
Biomechanical Factors in Tissue Engineered Meniscal Repair
,”
Clin. Orthop. Relat. Res.
0009-921X,
Oct
(
367
), pp.
S254
S272
.
3.
Petersen
,
W.
, and
Tillmann
,
B.
, 1998, “
Collagenous Fibril Texture of the Human Knee Joint Menisci
,”
Anat. Embryol. (Berl.)
,
197
(
4
), pp.
317
324
. 0340-2061
4.
Petersen
,
W.
,
Hohmann
,
G.
,
Pufe
,
T.
,
Tsokos
,
M.
,
Zantop
,
T.
,
Paulsen
,
F.
, and
Tillmann
,
B.
, 2004, “
Structure of the Human Tibialis Posterior Tendon
,”
Arch. Orthop. Trauma Surg.
0936-8051,
124
(
4
), pp.
237
242
.
5.
Iatridis
,
J. C.
,
MaClean
,
J. J.
, and
Ryan
,
D. A.
, 2005, “
Mechanical Damage to the Intervertebral Disc Annulus Fibrosus Subjected to Tensile Loading
,”
J. Biomech.
0021-9290,
38
(
3
), pp.
557
565
.
6.
Butler
,
D. L.
,
Shearn
,
J. T.
,
Juncosa
,
N.
,
Dressler
,
M. R.
, and
Hunter
,
S. A.
, 2004, “
Functional Tissue Engineering Parameters Toward Designing Repair and Replacement Strategies
,”
Clin. Orthop. Relat. Res.
0009-921X,
Oct
(
427
), pp.
S190
S199
.
7.
Awad
,
H. A.
,
Butler
,
D. L.
,
Harris
,
M. T.
,
Ibrahim
,
R. E.
,
Wu
,
Y.
,
Young
,
R. G.
,
Kadiyala
,
S.
, and
Boivin
,
G.
, 2000, “
In Vitro Characterization of Mesenchymal Stem Cell-Seeded Collagen Scaffolds for Tendon Repair: Effects of Initial Seeding Density on Contraction Kinetics
,”
J. Biomed. Mater. Res.
0021-9304,
51
(
2
), pp.
233
240
.
8.
Costa
,
K. D.
,
Lee
,
E. J.
, and
Holmes
,
J. W.
, 2003, “
Creating Alignment and Anisotropy Iin Engineered Heart Tissue: Role of Boundary Conditions in a Model Three-Dimensional Culture System
,”
Tissue Eng.
1076-3279,
9
(
4
), pp.
567
577
.
9.
Thomopoulos
,
S.
,
Fomovsky
,
G. M.
, and
Holmes
,
J. W.
, 2005, “
The Development of Structural and Mechanical Anisotropy in Fibroblast Populated Collagen Gels
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
5
), pp.
742
750
.
10.
Garvin
,
J.
,
Qi
,
J.
,
Maloney
,
M.
, and
Banes
,
A. J.
, 2003, “
Novel System for Engineering Bioartificial Tendons and Application of Mechanical Load
,”
Tissue Eng.
1076-3279,
9
(
5
), pp.
967
79
.
11.
Moutos
,
F. T.
,
Freed
,
L. E.
, and
Guilak
,
F.
, 2007, “
A Biomimetic Three-Dimensional Woven Composite Scaffold for Functional Tissue Engineering of Cartilage
,”
Nature Mater.
1476-1122,
6
(
2
), pp.
162
167
.
12.
Cooper
,
J. A.
,
Lu
,
H. H.
,
Ko
,
F. K.
,
Freeman
,
J. W.
, and
Laurencin
,
C. T.
, 2005, “
Fiber-Based Tissue-Engineered Scaffold for Ligament Replacement: Design Considerations and In Vitro Evaluation
,”
Biomaterials
0142-9612,
26
(
13
), pp.
1523
1532
.
13.
Altman
,
G. H.
,
Horan
,
R. L.
,
Lu
,
H. H.
,
Moreau
,
J.
,
Martin
,
I.
,
Richmond
,
J. C.
, and
Kaplan
,
D. L.
, 2002, “
Silk Matrix for Tissue Engineered Anterior Cruciate Ligaments
,”
Biomaterials
0142-9612,
23
(
20
), pp.
4131
4141
.
14.
Reneker
,
D. H.
, and
Chun
,
I.
, 1996, “
Nanometre Diameter Fibres of Polymer, Produced by Electrospinning
,”
Nanotechnology
0957-4484,
7
, pp.
216
223
.
15.
Formhals
,
A.
, 1934, “
Process and Apparatus for Preparing Artificial Threads
,” U.S. Patent No. 1,975,504.
16.
Burger
,
C.
,
Hsiao
,
B. S.
, and
Chu
,
B.
, 2006, “
Nanofibrous Materials and Their Applications
,”
Annu. Rev. Mater. Res.
1531-7331,
36
, pp.
333
368
.
17.
Li
,
W. J.
,
Mauck
,
R. L.
,
Cooper
,
J. A.
,
Yuan
,
X.
, and
Tuan
,
R. S.
, 2007, “
Engineering Controllable Anisotropy in Electrospun Biodegradable Nanofibrous Scaffolds for Musculoskeletal Tissue Engineering
,”
J. Biomech.
0021-9290,
40
(
8
), pp.
1686
1693
.
18.
Barnes
,
C. P.
,
Sell
,
S. A.
,
Boland
,
E. D.
,
Simpson
,
D. G.
, and
Bowlin
,
G. L.
, 2007, “
Nanofiber Technology: Designing the Next Generation of Tissue Engineering Scaffolds
,”
Adv. Drug Delivery Rev.
0169-409X,
59
(
14
), pp.
1413
1433
.
19.
Li
,
W. J.
,
Mauck
,
R. L.
, and
Tuan
,
R. S.
, 2005, “
Electrospun Nanofibrous Scaffolds: Production, Characterization, and Applications for Tissue Engineering and Drug Delivery
,”
J Biomed Nanotech
,
1
(
3
), pp.
259
275
.
20.
Stitzel
,
J.
,
Liu
,
J.
,
Lee
,
S. J.
,
Komura
,
M.
,
Berry
,
J.
,
Soker
,
S.
,
Lim
,
G.
,
Van Dyke
,
M.
,
Czerw
,
R.
,
Yoo
,
J. J.
, and
Atala
,
A.
, 2006, “
Controlled Fabrication of a Biological Vascular Substitute
,”
Biomaterials
0142-9612,
27
(
7
), pp.
1088
1094
.
21.
Ding
,
B.
,
Kimura
,
E.
,
Sato
,
T.
,
Fujita
,
S.
, and
Shiratori
,
S.
, 2004, “
Fabrication of Blend Biodegradable Nanofibrous Nonwoven Mats Via Multi-Jet Electrospinning
,”
Polymer
0032-3861,
45
(
6
), pp.
1895
1902
.
22.
Kidoaki
,
S.
,
Kwon
,
I. K.
, and
Matsuda
,
T.
, 2005, “
Mesoscopic Spatial Designs of Nano- and Microfiber Meshes for Tissue-Engineering Matrix and Scaffold Based on Newly Devised Multilayering and Mixing Electrospinning Techniques
,”
Biomaterials
0142-9612,
26
(
1
), pp.
37
46
.
23.
Baker
,
B. M.
,
Gee
,
A. O.
,
Metter
,
R. B.
,
Nathan
,
A. S.
,
Marklein
,
R. A.
,
Burdick
,
J. A.
, and
Mauck
,
R. L.
, 2008, “
The Potential to Improve Cell Infiltration in Composite Fiber-Aligned Electrospun Scaffolds by the Selective Removal of Sacrificial Fibers
,”
Biomaterials
0142-9612,
29
(
15
), pp.
2348
2358
.
24.
Sundaray
,
B.
,
Subramanian
,
V.
,
Natarajan
,
T.
,
Xiang
,
R.
,
Chang
,
C.
, and
Fann
,
W.
, 2004, “
Electrospinning of Continuous Aligned Polymer Fibers
,”
Appl. Phys. Lett.
0003-6951,
84
(
7
), pp.
1222
1224
.
25.
Ayres
,
C.
,
Bowlin
,
G. L.
,
Henderson
,
S. C.
,
Taylor
,
L.
,
Shultz
,
J.
,
Alexander
,
J.
,
Telemeco
,
T. A.
, and
Simpson
,
D. G.
, 2006, “
Modulation of Anisotropy in Electrospun Tissue-Engineering Scaffolds: Analysis of Fiber Alignment by the Fast Fourier Transform
,”
Biomaterials
0142-9612,
27
(
32
), pp.
5524
5234
.
26.
Courtney
,
T.
,
Sacks
,
M. S.
,
Stankus
,
J.
,
Guan
,
J.
, and
Wagner
,
W. R.
, 2006, “
Design and Analysis of Tissue Engineering Scaffolds That Mimic Soft Tissue Mechanical Anisotropy
,”
Biomaterials
0142-9612,
27
(
19
), pp.
3631
3638
.
27.
Nerurkar
,
N. L.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
, 2007, “
Mechanics of Oriented Electrospun Nanofibrous Scaffolds for Annulus Fibrosus Tissue Engineering
,”
J. Orthop. Res.
0736-0266,
25
(
8
), pp.
1018
1028
.
28.
Baker
,
B. M.
, and
Mauck
,
R. L.
, 2007, “
The Effect of Nanofiber Alignment on the Maturation of Engineered Meniscus Constructs
,”
Biomaterials
0142-9612,
28
(
11
), pp.
1967
1977
.
29.
Mathew
,
G.
,
Hong
,
J. P.
,
Rhee
,
L. M.
,
Leo
,
D. J.
, and
Nah
,
C.
, 2006, “
Preparation and Anisotropic Mechanical Behavior of Highly-Oriented Electrospun Poly(Butylene Terephthalate) Fibers
,”
J. Appl. Polym. Sci.
0021-8995,
101
(
3
), pp.
2017
2021
.
30.
De Vita
,
R.
,
Leo
,
D. J.
,
Woo
,
K. D.
, and
Nah
,
C.
, 2006, “
A Constitutive Law for Poly(Butylene Terephthalate) Nanofibers Mats
,”
J. Appl. Polym. Sci.
0021-8995,
102
(
6
), pp.
5280
5283
.
31.
Nerurkar
,
N. L.
,
Mauck
,
R. L.
, and
Elliott
,
D. M.
, 2008, “
ISSLS Prize Winner: Integrating Theoretical and Experimental Methods for Functional Tissue Engineering of the Annulus Fibrosus
,”
Spine
0362-2436,
33
(
25
), pp.
2691
2701
.
32.
Spencer
,
A. J. M.
, 1972,
Deformations of Fibre-Reinforced Materials
,
Oxford University Press
,
London
.
33.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester
, p.
455
.
34.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Schulze-Bauer
,
C. A.
, 2001, “
An Anisotropic Constitutive Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
4
, pp.
209
230
.
35.
Ogden
,
R. W.
, 1997,
Non-Linear Elastic Deformations
,
Dover
,
New York
.
36.
Ateshian
,
G. A.
, 2007, “
Anisotropy of Fibrous Tissues in Relation to the Distribution of Tensed and Buckled Fibers
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
2
), pp.
240
249
.
37.
Bland
,
J. M.
, and
Altman
,
D. G.
, 1986, “
Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement
,”
Lancet
0140-6736,
1
(
8476
), pp.
307
310
.
38.
Li
,
W. J.
,
Cooper
,
J. A.
, Jr.
,
Mauck
,
R. L.
, and
Tuan
,
R. S.
, 2006, “
Fabrication and Characterization of Six Electrospun Poly(Alpha-Hydroxy Ester)-Based Fibrous Scaffolds for Tissue Engineering Applications
,”
Acta Biomater.
1742-7061,
2
(
4
), pp.
377
85
.
39.
Moffat
,
K. L.
,
Kwei
,
A. S.
,
Spalazzi
,
J. P.
,
Doty
,
S. B.
,
Levine
,
W. N.
, and
Lu
,
H. H.
, 2008, “
Novel Nanofiber-Based Scaffold for Rotator Cuff Repair and Augmentation
,”
Tissue Eng.
1076-3279,
15
(
1
), pp.
115
126
.
40.
Fung
,
Y. C.
, 1982,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
.
41.
Guerin
,
H. A.
, and
Elliott
,
D. M.
, 2005, “
The Role of Fiber-Matrix Interactions in a Nonlinear Fiber-Reinforced Strain Energy Model of Tendon
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
2
), pp.
345
350
.
42.
Guo
,
Z. Y.
,
Peng
,
X. Q.
, and
Moran
,
B.
, 2006, “
A Composites-Based Hyperelastic Constitutive Model for Soft Tissue With Application to the Human Annulus Fibrosus
,”
J. Mech. Phys. Solids
0022-5096,
54
(
9
), pp.
1952
71
.
43.
Baker
,
B. M.
,
Nathan
,
A. S.
,
Huffman
,
G. R.
, and
Mauck
,
R. L.
, 2008, “
Tissue Engineering With Meniscus Cells Derived From Surgical Debris
,”
Osteoarthritis Cartilage
1063-4584,
17
(
3
), pp.
336
345
.
44.
Kidoaki
,
S.
,
Kwon
,
I. K.
, and
Matsuda
,
T.
, 2006, “
Structural Features and Mechanical Properties of In Situ-Bonded Meshes of Segmented Polyurethane Electrospun From Mixed Solvents
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
76B
(
1
), pp.
219
229
.
45.
Tan
,
A. R.
,
Ifkovits
,
J. L.
,
Baker
,
B. M.
,
Brey
,
D. M.
,
Mauck
,
R. L.
, and
Burdick
,
J. A.
, 2008, “
Electrospinning of Photocrosslinked and Degradable Fibrous Scaffolds
,”
J. Biomed. Mater. Res. Part A
1549-3296,
87A
(
4
), pp.
1034
1043
.
46.
Ifkovits
,
J. L.
,
Padera
,
R. F.
, and
Burdick
,
J. A.
, 2008, “
Biodegradable and Radically Polymerized Elastomers With Enhanced Processing Capabilities
,”
Biomed. Mater.
,
3
(
3
), p.
034104
. 1748-6041
You do not currently have access to this content.