The effect of pulse pressure on arterial wall remodeling has not been clearly defined. The objective of this study was to evaluate matrix remodeling in arteries under nonpulsatile and hyperpulsatile pressure as compared with arteries under normal pulsatile pressure. Porcine carotid arteries were cultured for 3 and 7 days under normal, nonpulsatile, and hyperpulsatile pressures with the same mean pressure and flow rate using an ex vivo organ culture model. Fenestrae in the internal elastic lamina, collagen, fibronectin, and gap junction protein connexin 43 were examined in these arteries using confocal microscopy, immunoblotting, and immunohistochemistry. Our results showed that after 7 days, the mean fenestrae size and the area fraction of fenestrae decreased significantly in nonpulsatile arteries (51% and 45%, respectively) and hyperpulsatile arteries (45% and 54%, respectively) when compared with normal pulsatile arteries. Fibronectin decreased (29.9%) in nonpulsatile arteries after 3 days but showed no change after 7 days, while collagen I levels increased significantly (106%) in hyperpulsatile arteries after 7 days. The expression of connexin 43 increased by 35.3% in hyperpulsatile arteries after 7 days but showed no difference in nonpulsatile arteries. In conclusion, our results demonstrated, for the first time, that an increase or a decrease in pulse pressure from its normal physiologic level stimulates structural changes in the arterial wall matrix. However, hyperpulsatile pressure has a more pronounced effect than the diminished pulse pressure. This effect helps to explain the correlation between increasing wall stiffness and increasing pulse pressure in vivo.

1.
Safar
,
M. E.
, and
Boudier
,
H. S.
, 2005, “
Vascular Development, Pulse Pressure, and the Mechanisms of Hypertension
,”
Hypertension
0194-911X,
46
(
1
), pp.
205
209
.
2.
Dart
,
A. M.
, and
Kingwell
,
B. A.
, 2001, “
Pulse Pressure—A Review of Mechanisms and Clinical Relevance
,”
J. Am. Coll. Cardiol.
0735-1097,
37
(
4
), pp.
975
984
.
3.
DeBakey
,
M. E.
, 2005, “
Development of Mechanical Heart Devices
,”
Ann. Thorac. Surg.
0003-4975,
79
(
6
), pp.
S2228
2231
.
4.
Izzo
,
J. L.
, Jr.
,
Levy
,
D.
, and
Black
,
H. R.
, 2000, “
Clinical Advisory Statement. Importance of Systolic Blood Pressure in Older Americans
,”
Hypertension
0194-911X,
35
(
5
), pp.
1021
1024
.
5.
Haider
,
A. W.
,
Larson
,
M. G.
,
Franklin
,
S. S.
, and
Levy
,
D.
, 2003, “
Systolic Blood Pressure, Diastolic Blood Pressure, and Pulse Pressure as Predictors of Risk for Congestive Heart Failure in the Framingham Heart Study
,”
Ann. Intern. Med.
,
138
(
1
), pp.
10
16
. 0003-4819
6.
Potapov
,
E. V.
,
Loebe
,
M.
,
Nasseri
,
B. A.
,
Sinawski
,
H.
,
Koster
,
A.
,
Kuppe
,
H.
,
Noon
,
G. P.
,
DeBakey
,
M. E.
, and
Hetzer
,
R.
, 2000, “
Pulsatile Flow in Patients With a Novel Nonpulsatile Implantable Ventricular Assist Device
,”
Circulation
0009-7322,
102
(
19
), pp.
183
187
.
7.
Saito
,
S.
,
Nishinaka
,
T.
, and
Westaby
,
S.
, 2004, “
Hemodynamics of Chronic Nonpulsatile Flow: Implications for LVAD Development
,”
Surg. Clin. North Am.
0039-6109,
84
(
1
), pp.
61
74
.
8.
Smith
,
J. D.
,
Davies
,
N.
,
Willis
,
A. I.
,
Sumpio
,
B. E.
, and
Zilla
,
P.
, 2001, “
Cyclic Stretch Induces the Expression of Vascular Endothelial Growth Factor in Vascular Smooth Muscle Cells
,”
Endothelium
1062-3329,
8
(
1
), pp.
41
48
.
9.
Cowan
,
D. B.
,
Lye
,
S. J.
, and
Langille
,
B. L.
, 1998, “
Regulation of Vascular Connexin43 Gene Expression by Mechanical Loads
,”
Circ. Res.
0009-7330,
82
(
7
), pp.
786
793
.
10.
Gupta
,
V.
, and
Grande-Allen
,
K. J.
, 2006, “
Effects of Static and Cyclic Loading in Regulating Extracellular Matrix Synthesis by Cardiovascular Cells
,”
Cardiovasc. Res.
0008-6363,
72
(
3
), pp.
375
383
.
11.
Boutouyrie
,
P.
,
Bussy
,
C.
,
Lacolley
,
P.
,
Girerd
,
X.
,
Laloux
,
B.
, and
Laurent
,
S.
, 1999, “
Association Between Local Pulse Pressure, Mean Blood Pressure, and Large-Artery Remodeling
,”
Circulation
0009-7322,
100
(
13
), pp.
1387
1393
.
12.
Laurent
,
S.
,
Tropeano
,
A. I.
,
Lillo-Lelouet
,
A.
,
Jondeau
,
G.
,
Laloux
,
B.
, and
Boutouyrie
,
P.
, 2001, “
Local Pulse Pressure is a Major Determinant of Large Artery Remodelling
,”
Clin. Exp. Pharmacol. Physiol.
0305-1870,
28
(
12
), pp.
1011
1014
.
13.
Wong
,
L. C.
, and
Langille
,
B. L.
, 1996, “
Developmental Remodeling of the Internal Elastic Lamina of Rabbit Arteries: Effect of Blood Flow
,”
Circ. Res.
0009-7330,
78
(
5
), pp.
799
805
.
14.
Jackson
,
Z. S.
,
Dajnowiec
,
D.
,
Gotlieb
,
A. I.
, and
Langille
,
B. L.
, 2005, “
Partial Off-Loading of Longitudinal Tension Induces Arterial Tortuosity
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
25
(
5
), pp.
957
962
.
15.
Jackson
,
Z. S.
,
Gotlieb
,
A. I.
, and
Langille
,
B. L.
, 2002, “
Wall Tissue Remodeling Regulates Longitudinal Tension in Arteries
,”
Circ. Res.
0009-7330,
90
(
8
), pp.
918
925
.
16.
Lehoux
,
S.
, and
Tedgui
,
A.
, 2003, “
Cellular Mechanics and Gene Expression in Blood Vessels
,”
J. Biomech.
0021-9290,
36
(
5
), pp.
631
643
.
17.
Bardy
,
N.
,
Karillon
,
G. J.
,
Merval
,
R.
,
Samuel
,
J. L.
, and
Tedgui
,
A.
, 1995, “
Differential Effects of Pressure and Flow on DNA and Protein Synthesis and on Fibronectin Expression by Arteries in a Novel Organ Culture System
,”
Circ. Res.
0009-7330,
77
(
4
), pp.
684
694
.
18.
Bardy
,
N.
,
Merval
,
R.
,
Benessiano
,
J.
,
Samuel
,
J. L.
, and
Tedgui
,
A.
, 1996, “
Pressure and Angiotensin II Synergistically Induce Aortic Fibronectin Expression in Organ Culture Model of Rabbit Aorta. Evidence for a Pressure-Induced Tissue Renin-Angiotensin System
,”
Circ. Res.
0009-7330,
79
(
1
), pp.
70
78
.
19.
Choy
,
M.
,
Ganesan
,
V.
,
Thomas
,
D. L.
,
Thornton
,
J. S.
,
Proctor
,
E.
,
King
,
M. D.
,
van der Weerd
,
L.
,
Gadian
,
D. G.
, and
Lythgoe
,
M. F.
, 2006, “
The Chronic Vascular and Haemodynamic Response After Permanent Bilateral Common Carotid Occlusion in Newborn and Adult Rats
,”
J. Cereb. Blood Flow Metab.
0271-678X,
26
(
8
), pp.
1066
1075
.
20.
Hoi
,
Y.
,
Gao
,
L.
,
Tremmel
,
M.
,
Paluch
,
R. A.
,
Siddiqui
,
A. H.
,
Meng
,
H.
, and
Mocco
,
J.
, 2008, “
In Vivo Assessment of Rapid Cerebrovascular Morphological Adaptation Following Acute Blood Flow Increase
,”
J. Neurosurg.
0022-3085,
109
(
6
), pp.
1141
1147
.
21.
Mercurius
,
K. O.
, and
Morla
,
A. O.
, 1998, “
Inhibition of Vascular Smooth Muscle Cell Growth by Inhibition of Fibronectin Matrix Assembly
,”
Circ. Res.
0009-7330,
82
(
5
), pp.
548
556
.
22.
Zhang
,
H. S.
, and
Wang
,
S. Q.
, 2006, “
Notoginsenoside R1 Inhibits TNF-Alpha-Induced Fibronectin Production in Smooth Muscle Cells via the ROS/ERK Pathway
,”
Free Radic. Biol. Med.
,
40
(
9
), pp.
1664
1674
. 0891-5849
23.
Intengan
,
H. D.
, and
Schiffrin
,
E. L.
, 2001, “
Vascular Remodeling in Hypertension: Roles of Apoptosis, Inflammation, and Fibrosis
,”
Hypertension
0194-911X,
38
(
3
), pp.
581
587
.
24.
Han
,
H. C.
, and
Ku
,
D. N.
, 2001, “
Contractile Responses in Arteries Subjected to Hypertensive Pressure in Seven-Day Organ Culture
,”
Ann. Biomed. Eng.
0090-6964,
29
(
6
), pp.
467
475
.
25.
Han
,
H. C.
,
Ku
,
D. N.
, and
Vito
,
R. P.
, 2003, “
Arterial Wall Adaptation Under Elevated Longitudinal Stretch in Organ Culture
,”
Ann. Biomed. Eng.
0090-6964,
31
(
4
), pp.
403
411
.
26.
Gleason
,
R. L.
,
Gray
,
S. P.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
, 2004, “
A Multiaxial Computer-Controlled Organ Culture and Biomechanical Device for Mouse Carotid Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
6
), pp.
787
795
.
27.
Clerin
,
V.
,
Gusic
,
R. J.
,
O’Brien
,
J.
,
Kirshbom
,
P. M.
,
Myung
,
R. J.
,
Gaynor
,
J. W.
, and
Gooch
,
K. J.
, 2002, “
Mechanical Environment, Donor Age, and Presence of Endothelium Interact to Modulate Porcine Artery Viability Ex Vivo
,”
Ann. Biomed. Eng.
0090-6964,
30
(
9
), pp.
1117
1127
.
28.
Chesler
,
N. C.
,
Ku
,
D. N.
, and
Galis
,
Z. S.
, 1999, “
Transmural Pressure Induces Matrix-Degrading Activity in Porcine Arteries Ex Vivo
,”
Am. J. Physiol.
0002-9513,
277
(
5
), pp.
H2002
2009
.
29.
Conklin
,
B. S.
,
Zhong
,
D. S.
,
Zhao
,
W.
,
Lin
,
P. H.
, and
Chen
,
C.
, 2002, “
Shear Stress Regulates Occludin and VEGF Expression in Porcine Arterial Endothelial Cells
,”
J. Surg. Res.
0022-4804,
102
(
1
), pp.
13
21
.
30.
Nichol
,
J. W.
,
Petko
,
M.
,
Myung
,
R. J.
,
Gaynor
,
J. W.
, and
Gooch
,
K. J.
, 2005, “
Hemodynamic Conditions Alter Axial and Circumferential Remodeling of Arteries Engineered Ex Vivo
,”
Ann. Biomed. Eng.
0090-6964,
33
(
6
), pp.
721
732
.
31.
Matsumoto
,
T.
,
Okumura
,
E.
,
Miura
,
Y.
, and
Sato
,
M.
, 1999, “
Mechanical and Dimensional Adaptation of Rabbit Carotid Artery Cultured In Vitro
,”
Med. Biol. Eng. Comput.
0140-0118,
37
(
2
), pp.
252
256
.
32.
Zulliger
,
M. A.
,
Montorzi
,
G.
, and
Stergiopulos
,
N.
, 2002, “
Biomechanical Adaptation of Porcine Carotid Vascular Smooth Muscle to Hypo and Hypertension In Vitro
,”
J. Biomech.
0021-9290,
35
(
6
), pp.
757
765
.
33.
Hayman
,
D. M.
,
Sprague
,
E. A.
, and
Han
,
H. C.
, 2007, “
Pulse Pressure Alters Arterial Function
,”
BMES Annual Fall Meeting
, Los Angels, CA.
34.
Kwak
,
B. R.
,
Silacci
,
P.
,
Stergiopulos
,
N.
,
Hayoz
,
D.
, and
Meda
,
P.
, 2005, “
Shear Stress and Cyclic Circumferential Stretch, But Not Pressure, Alter Connexin43 Expression in Endothelial Cells
,”
Cell Adhes. Commun.
,
12
(
5–6
), pp.
261
270
. 1541-9061
35.
Han
,
H. C.
,
Marita
,
S.
, and
Ku
,
D. N.
, 2006, “
Changes of Opening Angle in Hypertensive and Hypotensive Arteries in Three-Day Organ Culture
,”
J. Biomech.
0021-9290,
39
, pp.
2410
2418
.
36.
Liu
,
S. Q.
, and
Fung
,
Y. C.
, 1989, “
Relationship Between Hypertension, Hypertrophy, and Opening Angle of Zero-Stress State of Arteries Following Aortic Constriction
,”
ASME J. Biomech. Eng.
0148-0731,
111
(
4
), pp.
325
335
.
37.
Langille
,
B. L.
, 1996, “
Arterial Remodeling: Relation to Hemodynamics
,”
Can. J. Physiol. Pharmacol.
0008-4212,
74
(
7
), pp.
834
841
.
38.
Ku
,
D. N.
, 1997, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
399
434
.
39.
Galis
,
Z. S.
, and
Khatri
,
J. J.
, 2002, “
Matrix metalloproteinases in vascular remodeling and atherogenesis: The good, the bad, and the ugly
,”
Circ. Res.
0009-7330,
90
(
3
), pp.
251
262
.
You do not currently have access to this content.