A model for saccular cerebral aneurysm growth, proposed by Kroon and Holzapfel (2007, “A Model for Saccular Cerebral Aneurysm Growth in a Human Middle Cerebral Artery,” J. Theor. Biol., 247, pp. 775–787; 2008, “Modeling of Saccular Aneurysm Growth in a Human Middle Cerebral Artery,” ASME J. Biomech. Eng., 130, p. 051012), is further investigated. A human middle cerebral artery is modeled as a two-layer cylinder where the layers correspond to the media and the adventitia. The immediate loss of media in the location of the aneurysm is taken to be responsible for the initiation of the aneurysm growth. The aneurysm is regarded as a development of the adventitia, which is composed of several distinct layers of collagen fibers perfectly aligned in specified directions. The collagen fibers are the only load-bearing constituent in the aneurysm wall; their production and degradation depend on the stretch of the wall and are responsible for the aneurysm growth. The anisotropy of the surrounding media was modeled using the strain-energy function proposed by Holzapfel et al. (2000, “A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models,” J. Elast., 61, pp. 1–48), which is valid for an elastic material with two families of fibers. It was shown that the inclusion of fibers in the media reduced the maximum principal Cauchy stress and the maximum shear stress in the aneurysm wall. The thickness increase in the aneurysm wall due to material growth was also decreased. Varying the fiber angle in the media from a circumferential direction to a deviation of 10 deg from the circumferential direction did, however, only show a little effect. Altering the axial in situ stretch of the artery had a much larger effect in terms of the steady-state shape of the aneurysm and the resulting stresses in the aneurysm wall. The peak values of the maximum principal stress and the thickness increase both became significantly higher for larger axial stretches.

1.
Kim
,
C.
, and
Cervos-Navarro
,
J.
, 1991, “
Spontaneous Saccular Cerebral Aneurysm in a Rat
,”
Acta Neurochir. Suppl. (Wien)
0065-1419,
109
, pp.
63
65
.
2.
Schievink
,
W. I.
, 1997, “
Intracranial Aneurysms
,”
N. Engl. J. Med.
0028-4793,
336
, pp.
28
40
.
3.
Austin
,
G.
,
Fisher
,
S.
,
Dickson
,
D.
,
Anderson
,
D.
, and
Richardson
,
S.
, 1993, “
The Significance of the Extracellular Matrix in Intracranial Aneurysms
,”
Ann. Clin. Lab. Sci.
0091-7370,
23
, pp.
97
105
.
4.
Steiger
,
H. J.
, 1990, “
Pathophysiology of Development and Rupture of Cerebral Aneurysms
,”
Acta Neurochir. Suppl. (Wien)
0065-1419,
48
, pp.
1
57
.
5.
Baek
,
S.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
, 2006, “
A Theoretical Model of Enlarging Intracranial Fusiform Aneurysms
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
142
149
.
6.
Driessen
,
N. J. B.
,
Wilson
,
W.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
, 2004, “
A Computational Model for Collagen Fibre Remodelling in the Arterial Wall
,”
J. Theor. Biol.
0022-5193,
226
, pp.
53
64
.
7.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
, 2002, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Meth. Appl. Sci.
0218-2025,
12
, pp.
407
430
.
8.
Kroon
,
M.
, and
Holzapfel
,
G. A.
, 2007, “
A Model for Saccular Cerebral Aneurysm Growth by Collagen Fibre Remodelling
,”
J. Theor. Biol.
0022-5193,
247
, pp.
775
787
.
9.
Kroon
,
M.
, and
Holzapfel
,
G. A.
, 2008, “
Modeling of Saccular Aneurysm Growth in a Human Middle Cerebral Artery
,”
ASME J. Biomech. Eng.
0148-0731,
130
, p.
051012
.
10.
Watton
,
P. N.
,
Hill
,
N. A.
, and
Heil
,
M.
, 2004, “
A Mathematical Model for the Growth of the Abdominal Aortic Aneurysm
,”
Biomech. Model. Mechanobiol.
1617-7959,
3
, pp.
98
113
.
11.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
12.
Whittaker
,
P.
,
Schwab
,
M. E.
, and
Canham
,
P. B.
, 1988, “
The Molecular Organization of Collagen in Saccular Aneurysms Assessed by Polarized Light Microscopy
,”
Connect. Tissue Res.
0300-8207,
17
, pp.
43
54
.
13.
Canham
,
P. B.
,
Talman
,
E. A.
,
Finlay
,
H. M.
, and
Dixon
,
J. G.
, 1991, “
Medial Collagen Organization in Human Arteries of the Heart and Brain by Polarized Light Microscopy
,”
Connect. Tissue Res.
0300-8207,
26
, pp.
121
134
.
14.
Rowe
,
A. J.
,
Finlay
,
H. M.
, and
Canham
,
P. B.
, 2003, “
Collagen Biomechanics in Cerebral Arteries and Bifurcations Assessed by Polarizing Microscopy
,”
J. Vasc. Res.
1018-1172,
40
, pp.
406
415
.
15.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics. A Continuum Approach for Engineering
,
Wiley
,
Chichester, UK
.
16.
Canham
,
P. B.
,
Korol
,
R. M.
,
Finlay
,
H. M.
,
Hammond
,
R. R.
,
Holdsworth
,
D. W.
,
Ferguson
,
G. G.
, and
Lucas
,
A. R.
, 2006, “
Collagen Organization and Biomechanics of the Arteries and Aneurysms of the Human Brain
,”
Mechanics of Biological Tissue
,
G. A.
Holzapfel
and
R. W.
Ogden
, eds.,
Springer-Verlag
,
Heidelberg, Germany
, pp.
307
322
.
17.
Coulson
,
R. J.
,
Cipolla
,
M. J.
,
Vitullo
,
L.
, and
Chesler
,
N. C.
, 2004, “
Mechanical Properties of Rat Middle Cerebral Arteries With and Without Myogenic Tone
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
76
81
.
18.
Finlay
,
H. M.
,
McCullough
,
L.
, and
Canham
,
P. B.
, 1995, “
Three-Dimensional Collagen Organization of Human Brain Arteries at Different Transmural Pressures
,”
J. Vasc. Res.
1018-1172,
32
, pp.
301
312
.
19.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Stadler
,
M.
, 2002, “
A Structural Model for the Viscoelastic Behavior of Arterial Walls: Continuum Formulation and Finite Element Analysis
,”
Eur. J. Mech. A/Solids
0997-7538,
21
, pp.
441
463
.
20.
Holzapfel
,
G. A.
,
Sommer
,
G.
, and
Regitnig
,
P.
, 2004, “
Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
657
665
.
21.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
, 2005, “
Determination of the Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening, and Related Constitutive Modelling
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
289
, pp.
H2048
2058
.
22.
Monson
,
K. L.
,
Goldsmith
,
W.
,
Barbaro
,
N. M.
, and
Manley
,
G. T.
, 2005, “
Significance of Source and Size in the Mechanical Response of Human Cerebral Blood Vessels
,”
J. Biomech.
0021-9290,
38
, pp.
737
744
.
23.
Smith
,
J. F. H.
,
Canham
,
P. B.
, and
Starkey
,
J.
, 1981, “
Orientation of Collagen in the Tunica Adventitia of the Human Cerebral Artery Measured With Polarized Light and the Universal Stage
,”
J. Ultrastruct. Res.
0022-5320,
77
, pp.
133
145
.
24.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1983, “
Three-Dimensional Stress Distribution in Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
105
, pp.
268
274
.
25.
Chatziprodromou
,
I.
,
Tricoli
,
A.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
, 2007, “
Haemodynamics and Wall Remodelling of a Growing Cerebral Aneurysm: A Computational Model
,”
J. Biomech.
0021-9290,
40
, pp.
412
426
.
26.
Schulze-Bauer
,
C. A. J.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
, 2002, “
Mechanics of the Human Femoral Adventitia Including High-Pressure Response
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
282
, pp.
H2427
H2440
.
27.
Schulze-Bauer
,
C. A. J.
,
Mörth
,
C.
, and
Holzapfel
,
G. A.
, 2003, “
Passive Biaxial Mechanical Response of Aged Human Iliac Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
395
406
.
28.
Monson
,
K. L.
,
Goldsmith
,
W.
,
Barbaro
,
N. M.
, and
Manley
,
G. T.
, 2003, “
Axial Mechanical Properties of Fresh Human Cerebral Blood Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
288
294
.
29.
Taylor
,
R. L.
, 2007,
FEAP—A Finite Element Analysis Program, Version 8.2 User Manual
,
University of California at Berkeley
,
Berkeley, CA
.
30.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics. Cells, Tissues, and Organs
,
Springer-Verlag
,
New York
.
31.
MacDonald
,
D. J.
,
Finlay
,
H. M.
, and
Canham
,
P. B.
, 2000, “
Directional Wall Strength in Saccular Brain Aneurysms From Polarized Light Microscopy
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
533
542
.
You do not currently have access to this content.