Remodeling of tissue in response to physical stress is a very complex process. The changes in the stimulus (cause) and response (effect) must be measured and the results must be organized into mathematical forms that are suitable for predictions and applications. An experiment where the stimulus (pressure, flow, shear stress, etc.) can be changed approximately as a step function (a step plus a perturbation) and the response (structure, material properties, function, etc.), which can be measured over time, can be simulated by indicial response functions (IRFs). The IRF is a mathematical expression of the ratio of the change in a particular feature of the system in response to a unit step change in stimulus. The IRF approach provides a quantitative description of the remodeling process, simplifies the interpretation of data, and greatly increases the potential of using the experimental data for prediction of the outcome for future experiments. The objective of this review is to provide an overview of the IRF approach including some exemplary systems. The goal is to illustrate how the indicial expressions make it possible to integrate biological complexity by convolution. The time courses of stimuli represent half of the convolution while the time course of changes in response represents the second half of the convolution. The IRF approach provides an understanding of the physiological problems with mathematical accuracy and may be conducive to new findings.

1.
Liu
,
S. Q.
, and
Fung
,
Y. C.
, 1996, “
Indicial Functions of Arterial Remodeling in Response to Locally Altered Blood Pressure
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
270
(
39
), pp.
H1323
H1333
.
2.
Huang
,
W.
,
Shen
,
Z.
,
Huang
,
N. E.
, and
Fung
,
Y. C.
, 1999, “
Nonlinear Indicial Response of Complex Nonstationary Oscillations as Pulmonary Hypertension Responding to Step Hypoxia
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
96
(
5
), pp.
1834
1839
.
3.
Li
,
Z.
,
Huang
,
W.
,
Jiang
,
Z. L.
,
Gregersen
,
H.
, and
Fung
,
Y. C.
, 2004, “
Tissue Remodeling of Rat Pulmonary Arteries in Recovery From Hypoxic Hypertension
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
(
31
), pp.
11488
11493
.
4.
Lu
,
X.
,
Zhao
,
J. B.
,
Wang
,
G. R.
,
Gregersen
,
H.
, and
Kassab
,
G. S.
, 2001, “
Remodeling of the Zero-Stress State of the Femoral Artery in Response to Flow-Overload
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
280
, pp.
H1547
H1559
.
5.
Dang
,
Q.
,
Duch
,
B.
,
Gregersen
,
H.
, and
Kassab
,
G. S.
, 2004, “
Indicial Response of Growth and Remodeling of Common Bile Duct Post Obstruction
,”
Am. J. Physiol. Gastrointest. Liver Physiol.
,
286
(
3
), pp.
G420
G427
. 0193-1857
6.
Bendat
,
J. S.
, and
Piersol
,
A. G.
, 1986,
Random Data: Analysis and Measurement Procedures
,
2nd ed.
,
Wiley
,
New York
.
7.
Bloomfield
,
P.
, 1976,
Fourier Analysis of Time Series—An Introduction
,
Wiley
,
New York
.
8.
Champeney
,
C. C.
, 1973,
Fourier Transforms and Their Physical Applications
,
Academic
,
New York
.
9.
Nichols
,
W. W.
, and
O’Rourke
,
M. F.
, 1998,
McDonald’s Blood Flow in Arteries Theoretical, Experimental and Clinical Principles
,
4th ed.
,
Oxford University Press
,
New York
.
10.
Oppenheim
,
A. V.
, and
Schafer
,
R. W.
, 1989,
Digital Signal Processing
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
11.
1995,
Flow-Dependent Regulation of Vascular Function
,
J. A.
Baven
,
G.
Kaley
, and
G. M.
Rubanyi
, eds.,
Oxford University Press
,
New York
.
12.
Chan
,
Y. T.
, 1995,
Wavelet Basics
,
Kluwer Academic
,
Boston, MA
.
13.
Long
,
S. R.
,
Lai
,
R. J.
,
Huang
,
N. E.
, and
Spedding
,
G. R.
, 1993, “
Blocking and Trapping of Waves in an Inhomogeneous Flow
,”
Dyn. Atmos. Oceans
0377-0265,
20
, pp.
79
106
.
14.
Spedding
,
G. R.
,
Browand
,
F. K.
,
Huang
,
N. E.
, and
Long
,
S. R.
, 1993, “
A 2D Complex Wavelet Analysis of an Unsteady Wind-Generated Surface Wave Field
,”
Dyn. Atmos. Oceans
0377-0265,
20
, pp.
55
77
.
15.
Claasen
,
T. A. C. M.
, and
Mecklenbrauker
,
W. F. G.
, 1980, “
The Wigner Distribution—A Tool for Time Frequency Signal Analysis. I. Continuous Time Signals
,”
Philips J. Res.
0165-5817,
35
, pp.
217
250
.
16.
Claasen
,
T. A. C. M.
, and
Mecklenbrauker
,
W. F. G.
, 1980, “
The Wigner Distribution—A Tool for Time Frequency Signal Analysis. II. Discrete Time Signals
,”
Philips J. Res.
0165-5817,
35
, pp.
276
300
.
17.
Claasen
,
T. A. C. M.
, and
Mecklenbrauker
,
W. F. G.
, 1980, “
The Wigner Distribution—A Tool for Time Frequency Signal Analysis. III. Relations With Other Time-Frequency Signal Transformations
,”
Philips J. Res.
0165-5817,
35
, pp.
372
389
.
18.
Cohen
,
L.
, 1995,
Time-Frequency Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
19.
Priestley
,
M. B.
, 1965, “
Evolution Spectra and Non-Stationary Processes
,”
J. R. Stat. Soc. Ser. B
,
27
, pp.
204
237
. 0035-9246
20.
Pandit
,
S. M.
, 1991,
Model and Spectrum Analysis: Data Dependent Systems in State Space
,
Wiley
,
New York
.
21.
Huang
,
N. E.
,
Long
,
S. R.
, and
Shen
,
Z.
, 1996, “
The Mechanism for Frequency Downshift in Nonlinear Wave Evolution
,”
Adv. Appl. Mech.
0065-2156,
32
, pp.
59
111
.
22.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. L.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N. C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
, 1998, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. London, Ser. A
0950-1207,
454
, pp.
903
995
.
23.
Axelsson
,
M.
,
Dang
,
Q.
,
Pitsillides
,
K.
,
Munns
,
S.
,
Hicks
,
J.
, and
Kassab
,
G. S.
, 2007, “
A Novel Fully Implantable Multi-Channel Biotelemetry System for Measurement of Blood Flow, Pressure, ECG and Temperature
,”
J. Appl. Physiol.
8750-7587,
102
(
3
), pp.
1220
1228
.
24.
Dang
,
Q.
,
Nenadic
,
Z.
, and
Kassab
,
G. S.
, 2008, “
A Comparative Analysis of Coronary and Aortic Waveform
,”
Ann. Biomed. Eng.
0090-6964,
36
(
6
), pp.
933
946
.
25.
Huang
,
W.
,
Shen
,
Z.
,
Huang
,
N. E.
, and
Fung
,
Y. C.
, 1998, “
Engineering Analysis of Biological Variables: An Example of Blood Pressure Over a Day
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
95
, pp.
4816
4821
.
26.
Huang
,
W.
,
Shen
,
Z.
,
Huang
,
N. E.
, and
Fung
,
Y. C.
, 1998, “
Use of Intrinsic Modes in Biology: Examples of Indicial Response of Pulmonary Blood Pressure to +/− Step Hypoxia
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
95
(
22
), pp.
12766
12771
.
27.
Kassab
,
G. S.
, and
Navia
,
J. A.
, 2006, “
Biomechanical Considerations in the Design of Graft: The Homeostasis Hypothesis
,”
Annu. Rev. Biomed. Eng.
1523-9829,
8
, pp.
499
535
.
28.
Guo
,
X.
, and
Kassab
,
G. S.
, 2004, “
Distribution of Stress and Strain Along the Porcine Aorta and Coronary Arterial Tree
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
286
(
6
), pp.
H2361
H2368
.
29.
Kassab
,
G. S.
, 2006, “
The Biomechanics of the Cardiovascular System
,”
J. R. Soc., Interface
1742-5689,
3
(
11
), pp.
719
740
.
You do not currently have access to this content.