Computational models of arterial growth and remodeling promise to increase our understanding of basic biological processes, such as development, tissue maintenance, and aging, the biomechanics of functional adaptation, the progression and treatment of disease, responses to injuries, and even the design of improved replacement vessels and implanted medical devices. Ensuring reliability of and confidence in such models requires appropriate attention to verification and validation, including parameter sensitivity studies. In this paper, we classify different types of parameters within a constrained mixture model of arterial growth and remodeling; we then evaluate the sensitivity of model predictions to parameter values that are not known directly from experiments for cases of modest sustained alterations in blood flow and pressure as well as increased axial extension. Particular attention is directed toward complementary roles of smooth muscle vasoactivity and matrix turnover, with an emphasis on mechanosensitive changes in the rates of turnover of intramural fibrillar collagen and smooth muscle in maturity. It is shown that vasoactive changes influence the rapid change in caliber that is needed to maintain wall shear stress near its homeostatic level and the longer term changes in wall thickness that are needed to maintain circumferential wall stress near its homeostatic target. Moreover, it is shown that competing effects of intramural and wall shear stress-regulated rates of turnover can develop complex coupled responses. Finally, results demonstrate that the sensitivity to parameter values depends upon the type of perturbation from normalcy, with changes in axial stretch being most sensitive consistent with empirical reports.

1.
Valentín
,
A.
,
Cardamone
,
L.
,
Baek
,
S.
, and
Humphrey
,
J. D.
, 2009, “
Complementary Vasoactivity and Matrix Remodelling in Arterial Adaptations to Altered Flow and Pressure
,”
J. R. Soc., Interface
1742-5689,
6
(
32
), pp.
293
306
.
2.
Baek
,
S.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
, 2006, “
A Theoretical Model of Enlarging Intracranial Fusiform Aneurysms
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
1
), pp.
142
149
.
3.
Baek
,
S.
,
Valentín
,
A.
, and
Humphrey
,
J. D.
, 2007, “
Biochemomechanics of Cerebral Vasospasm and Its Resolution: II. Constitutive Relations and Model Simulations
,”
Ann. Biomed. Eng.
0090-6964,
35
(
9
), pp.
1498
1509
.
4.
Baek
,
S.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
, 2005, “
Competition Between Radial Expansion and Thickening in the Enlargement of an Intracranial Saccular Aneurysm
,”
J. Elast.
0374-3535,
80
(
1–3
), pp.
13
31
.
5.
Figueroa
,
C. A.
,
Baek
,
S.
,
Taylor
,
C. A.
, and
Humphrey
,
J. D.
, 2009, “
A Computational Framework for Fluid-Solid-Growth Modeling in Cardiovascular Simulations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825 (to be published).
6.
Valentín
,
A.
, and
Humphrey
,
J. D.
, 2009, “
Evaluation of Fundamental Hypotheses Underlying Constrained Mixture Models of Arterial Growth and Remodeling
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
367
, pp.
3585
3606
.
7.
Anderson
,
A. E.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
, 2007, “
Verification, Validation and Sensitivity Studies in Computational Biomechanics
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
10
(
3
), pp.
171
184
.
8.
Lodi
,
C. A.
, and
Ursino
,
M.
, 1999, “
Hemodynamic Effect of Cerebral Vasospasm in Humans: A Modeling Study
,”
Ann. Biomed. Eng.
0090-6964,
27
(
2
), pp.
257
273
.
9.
Wicker
,
B. K.
,
Hutchens
,
H. P.
,
Wu
,
Q.
,
Yeh
,
A. T.
, and
Humphrey
,
J. D.
, 2008, “
Normal Basilar Artery Structure and Biaxial Mechanical Behaviour
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
11
(
5
), pp.
539
551
.
10.
Fischer
,
G. M.
, and
Llaurado
,
J. G.
, 1966, “
Collagen and Elastin Content in Canine Arteries Selected From Functionally Different Vascular Beds
,”
Circ. Res.
0009-7330,
19
(
2
), pp.
394
399
.
11.
Walmsley
,
J. G.
,
Campling
,
M. R.
, and
Chertkow
,
H. M.
, 1983, “
Interrelationships Among Wall Structure, Smooth Muscle Orientation, and Contraction in Human Major Cerebral Arteries
,”
Stroke
0039-2499,
14
(
5
), pp.
781
790
.
12.
Dorrington
,
K. L.
, and
McCrum
,
N. G.
, 1977, “
Elastin as a Rubber
,”
Biopolymers
0006-3525,
16
(
6
), pp.
1201
1222
.
13.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
(
1–3
), pp.
1
48
.
14.
Cardamone
,
L.
,
Valentín
,
A.
,
Eberth
,
J. F.
, and
Humphrey
,
J. D.
, 2009, “
Origin of Axial Prestretch and Residual Stress in Arteries
,”
Biomech. Model. Mechanobiol.
1617-7959 (to be published).
15.
Lanir
,
Y.
, 1983, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
0021-9290,
16
(
1
), pp.
1
12
.
16.
Gleason
,
R. L.
,
Taber
,
L. A.
, and
Humphrey
,
J. D.
, 2004, “
A 2-d Model of Flow-Induced Alterations in the Geometry, Structure, and Properties of Carotid Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
3
), pp.
371
381
.
17.
Price
,
J. M.
,
Davis
,
D. L.
, and
Knauss
,
E. B.
, 1981, “
Length-Dependent Sensitivity in Vascular Smooth Muscle
,”
Am. J. Physiol.
0002-9513,
241
(
4
), pp.
H557
H563
.
18.
Rachev
,
A.
, and
Hayashi
,
K.
, 1999, “
Theoretical Study of the Effects of Vascular Smooth Muscle Contraction on Strain and Stress Distributions in Arteries
,”
Ann. Biomed. Eng.
0090-6964,
27
(
4
), pp.
459
468
.
19.
Rodbard
,
S.
, 1975, “
Vascular Caliber
,”
Cardiology
0008-6312,
60
(
1
), pp.
4
49
.
20.
Zamir
,
M.
, 1977, “
Shear Forces and Blood Vessel Radii in the Cardiovascular System
,”
J. Gen. Physiol.
0022-1295,
69
(
4
), pp.
449
461
.
21.
Murray
,
C. D.
, 1926, “
The Physiological Principle of Minimum Work: I. the Vascular System and the Cost of Blood Volume
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
12
(
3
), pp.
207
214
.
22.
Stenmark
,
K. R.
, and
Mecham
,
R. P.
, 1997, “
Cellular and Molecular Mechanisms of Pulmonary Vascular Remodeling
,”
Annu. Rev. Physiol.
0066-4278,
59
, pp.
89
144
.
23.
Leung
,
D. Y.
,
Glagov
,
S.
, and
Mathews
,
M. B.
, 1976, “
Cyclic Stretching Stimulates Synthesis of Matrix Components by Arterial Smooth Muscle Cells In Vitro
,”
Science
0036-8075,
191
(
4226
), pp.
475
477
.
24.
Wilson
,
E.
,
Mai
,
Q.
,
Sudhir
,
K.
,
Weiss
,
R. H.
, and
Ives
,
H. E.
, 1993, “
Mechanical Strain Induces Growth of Vascular Smooth Muscle Cells Via Autocrine Action of PDGF
,”
J. Cell Biol.
0021-9525,
123
(
3
), pp.
741
747
.
25.
Li
,
Q.
,
Muragaki
,
Y.
,
Hatamura
,
I.
,
Ueno
,
H.
, and
Ooshima
,
A.
, 1998, “
Stretch-Induced Collagen Synthesis in Cultured Smooth Muscle Cells From Rabbit Aortic Media and a Possible Involvement of Angiotensin II and Transforming Growth Factor-β
,”
J. Vasc. Res.
1018-1172,
35
(
2
), pp.
93
103
.
26.
O’Callaghan
,
C. J.
, and
Williams
,
B.
, 2000, “
Mechanical Strain-Induced Extracellular Matrix Production by Human Vascular Smooth Muscle Cells: Role of TGF-β1
,”
Hypertension
0194-911X,
36
(
3
), pp.
319
324
.
27.
Sluijter
,
J. P. G.
,
Smeets
,
M. B.
,
Velema
,
E.
,
Pasterkamp
,
G.
, and
de Kleijn
,
D. P. V.
, 2004, “
Increase in Collagen Turnover but Not in Collagen Fiber Content Is Associated With Flow-Induced Arterial Remodeling
,”
J. Vasc. Res.
1018-1172,
41
(
6
), pp.
546
555
.
28.
Mondy
,
J. S.
,
Lindner
,
V.
,
Miyashiro
,
J. K.
,
Berk
,
B. C.
,
Dean
,
R. H.
, and
Geary
,
R. L.
, 1997, “
Platelet-Derived Growth Factor Ligand and Receptor Expression in Response to Altered Blood Flow In Vivo
,”
Circ. Res.
0009-7330,
81
(
3
), pp.
320
327
.
29.
Cho
,
A.
,
Mitchell
,
L.
,
Koopmans
,
D.
, and
Langille
,
B. L.
, 1997, “
Effects of Changes in Blood Flow Rate on Cell Death and Cell Proliferation in Carotid Arteries of Immature Rabbits
,”
Circ. Res.
0009-7330,
81
(
3
), pp.
328
337
.
30.
Xu
,
C.
,
Lee
,
S.
,
Singh
,
T. M.
,
Sho
,
E.
,
Li
,
X.
,
Sho
,
M.
,
Masuda
,
H.
, and
Zarins
,
C. K.
, 2001, “
Molecular Mechanisms of Aortic Wall Remodeling in Response to Hypertension
,”
J. Vasc. Surg.
0741-5214,
33
(
3
), pp.
570
578
.
31.
Nissen
,
R.
,
Cardinale
,
G. J.
, and
Udenfriend
,
S.
, 1978, “
Increased Turnover of Arterial Collagen in Hypertensive Rats
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
75
(
1
), pp.
451
453
.
32.
Jamal
,
A.
,
Bendeck
,
M.
, and
Langille
,
B. L.
, 1992, “
Structural Changes and Recovery of Function After Arterial Injury
,”
Arterioscler. Thromb.
1049-8834,
12
(
3
), pp.
307
317
.
33.
Xu
,
C.
,
Zarins
,
C. K.
,
Bassiouny
,
H. S.
,
Briggs
,
W. H.
,
Reardon
,
C.
, and
Glagov
,
S.
, 2000, “
Differential Transmural Distribution of Gene Expression for Collagen Types I and III Proximal to Aortic Coarctation in the Rabbit
,”
J. Vasc. Res.
1018-1172,
37
(
3
), pp.
170
182
.
34.
Humphrey
,
J. D.
,
Eberth
,
J. F.
,
Dye
,
W. W.
, and
Gleason
,
R. L.
, 2009, “
Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries
,”
J. Biomech.
0021-9290,
42
(
1
), pp.
1
8
.
35.
Jackson
,
Z. S.
,
Gotlieb
,
A. I.
, and
Langille
,
B. L.
, 2002, “
Wall Tissue Remodeling Regulates Longitudinal Tension in Arteries
,”
Circ. Res.
0009-7330,
90
(
8
), pp.
918
925
.
36.
Sluijter
,
J. P. G.
,
Smeets
,
M. B.
,
Velema
,
E.
,
Pasterkamp
,
G.
, and
de Kleijn
,
D. P. V.
, 2004b, “
Increased Collagen Turnover Is Only Partly Associated With Collagen Fiber Deposition in the Arterial Response to Injury
,”
Cardiovasc. Res.
0008-6363,
61
(
1
), pp.
186
195
.
37.
Strauss
,
B. H.
,
Robinson
,
R.
,
Batchelor
,
W. B.
,
Chisholm
,
R. J.
,
Ravi
,
G.
,
Natarajan
,
M. K.
,
Logan
,
R. A.
,
Mehta
,
S. R.
,
Levy
,
D. E.
,
Ezrin
,
A. M.
, and
Keeley
,
F. W.
, 1996, “
In Vivo Collagen Turnover Following Experimental Balloon Angioplasty Injury and the Role of Matrix Metalloproteinases
,”
Circ. Res.
0009-7330,
79
(
3
), pp.
541
550
.
38.
Strauss
,
B. H.
,
Chisholm
,
R. J.
,
Keeley
,
F. W.
,
Gotlieb
,
A. I.
,
Logan
,
R. A.
, and
Armstrong
,
P. W.
, 1994, “
Extracellular Matrix Remodeling After Balloon Angioplasty Injury in a Rabbit Model of Restenosis
,”
Circ. Res.
0009-7330,
75
(
4
), pp.
650
658
.
39.
Karim
,
M. A.
,
Miller
,
D. D.
,
Farrar
,
M. A.
,
Eleftheriades
,
E.
,
Reddy
,
B. H.
,
Breland
,
C. M.
, and
Samarel
,
A. M.
, 1995, “
Histomorphometric and Biochemical Correlates of Arterial Procollagen Gene Expression During Vascular Repair After Experimental Angioplasty
,”
Circulation
0009-7322,
91
(
7
), pp.
2049
2057
.
40.
Bendeck
,
M. P.
,
Irvin
,
C.
,
Reidy
,
M.
,
Smith
,
L.
,
Mulholland
,
D.
,
Horton
,
M.
, and
Giachelli
,
C. M.
, 2000, “
Smooth Muscle Cell Matrix Metalloproteinase Production is Stimulated Via αvβ3 Integrin
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
20
(
6
), pp.
1467
1472
.
41.
Weiser-Evans
,
M. C.
,
Quinn
,
B. E.
,
Burkard
,
M. R.
, and
Stenmark
,
K. R.
, 2000, “
Transient Reexpression of an Embryonic Autonomous Growth Phenotype by Adult Carotid Artery Smooth Muscle Cells After Vascular Injury
,”
J. Cell Physiol.
0021-9541,
182
(
1
), pp.
12
23
.
42.
Shi
,
Y.
,
Pieniek
,
M.
,
Fard
,
A.
,
O’Brien
,
J.
,
Mannion
,
J. D.
, and
Zalewski
,
A.
, 1996, “
Adventitial Remodeling After Coronary Arterial Injury
,”
Circulation
0009-7322,
93
(
2
), pp.
340
348
.
43.
Thakker-Varia
,
S.
,
Tozzi
,
C. A.
,
Poiani
,
G. J.
,
Babiarz
,
J. P.
,
Tatem
,
L.
,
Wilson
,
F. J.
, and
Riley
,
D. J.
, 1998, “
Expression of Matrix-Degrading Enzymes in Pulmonary Vascular Remodeling in the Rat
,”
Am. J. Physiol.
0002-9513,
275
(
2
), pp.
L398
L406
.
44.
Rizvi
,
M. A. D.
,
Katwa
,
L.
,
Spadone
,
D. P.
, and
Myers
,
P. R.
, 1996, “
The Effects of Endothelin-1 on Collagen Type I and Type III Synthesis in Cultured Porcine Coronary Artery Vascular Smooth Muscle Cells
,”
J. Mol. Cell. Cardiol.
0022-2828,
28
(
2
), pp.
243
252
.
45.
Rizvi
,
M. A. D.
, and
Myers
,
P. R.
, 1997, “
Nitric Oxide Modulates Basal and Endothelin-Induced Coronary Artery Vascular Smooth Muscle Cell Proliferation and Collagen Levels
,”
J. Mol. Cell. Cardiol.
0022-2828,
29
(
7
), pp.
1779
1789
.
46.
Dooley
,
A.
,
Gao
,
B.
,
Shi-Wen
,
X.
,
Abraham
,
D. J.
,
Black
,
C. M.
,
Jacobs
,
M.
, and
Bruckdorfer
,
K. R.
, 2007, “
Effect of Nitric Oxide and Peroxynitrite on Type I Collagen Synthesis in Normal and Scleroderma Dermal Fibroblasts
,”
Free Radic Biol. Med.
0891-5849,
43
(
2
), pp.
253
264
.
47.
Uematsu
,
M.
,
Ohara
,
Y.
,
Navas
,
J. P.
,
Nishida
,
K.
,
Murphy
,
T. J.
,
Alexander
,
R. W.
,
Nerem
,
R. M.
, and
Harrison
,
D. G.
, 1995, “
Regulation of Endothelial Cell Nitric Oxide Synthase mRNA Expression by Shear Stress
,”
Am. J. Physiol.
0002-9513,
269
(
6
), pp.
C1371
C1378
.
48.
Malek
,
A.
, and
Izumo
,
S.
, 1992, “
Physiological Fluid Shear Stress Causes Downregulation of Endothelin-1 mRNA in Bovine Aortic Endothelium
,”
Am. J. Physiol.
0002-9513,
263
(
2
), pp.
C389
C396
.
49.
Singh
,
T. M.
,
Abe
,
K. Y.
,
Sasaki
,
T.
,
Zhuang
,
Y. J.
,
Masuda
,
H.
, and
Zarins
,
C. K.
, 1998, “
Basic Fibroblast Growth Factor Expression Precedes Flow-Induced Arterial Enlargement
,”
J. Surg. Res.
0022-4804,
77
(
2
), pp.
165
173
.
50.
Taber
,
L. A.
, 1998, “
A Model for Aortic Growth Based on Fluid Shear and Fiber Stresses
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
3
), pp.
348
354
.
51.
Rachev
,
A.
, 2000, “
A Model of Arterial Adaptation to Alterations in Blood Flow
,”
J. Elast.
0374-3535,
61
(
1–3
), pp.
83
111
.
52.
Rodriguez-Vita
,
J.
,
Ruiz-Ortega
,
M.
,
Ruperez
,
M.
,
Esteban
,
V.
,
Sanchez-Lopez
,
E.
,
Plaza
,
J. J.
, and
Egido
,
J.
, 2005, “
Endothelin-1, Via ETA Receptor and Independently of Transforming Growth Factor-β, Increases the Connective Tissue Growth Factor in Vascular Smooth Muscle Cells
,”
Circ. Res.
0009-7330,
97
(
2
), pp.
125
134
.
53.
Niedermüller
,
H.
,
Skalicky
,
M.
,
Hofecker
,
G.
, and
Kment
,
A.
, 1977, “
Investigations on the Kinetics of Collagen-Metabolism in Young and Old Rats
,”
Exp. Gerontol.
0531-5565,
12
(
5–6
), pp.
159
168
.
54.
Cho
,
A.
,
Courtman
,
D. W.
, and
Langille
,
B. L.
, 1995, “
Apoptosis (Programmed Cell Death) in Arteries of the Neonatal Lamb
,”
Circ. Res.
0009-7330,
76
(
2
), pp.
168
175
.
55.
Gelman
,
R. A.
,
Williams
,
B. R.
, and
Piez
,
K. A.
, 1979a, “
Collagen Fibril Formation. Evidence for a Multistep Process
,”
J. Biol. Chem.
0021-9258,
254
(
1
), pp.
180
186
.
56.
Gelman
,
R. A.
,
Poppke
,
D. C.
, and
Piez
,
K. A.
, 1979b, “
Collagen Fibril Formation In Vitro. The Role of the Nonhelical Terminal Regions
,”
J. Biol. Chem.
0021-9258,
254
(
22
), pp.
11741
11745
.
57.
Kao
,
W. W.
,
Berg
,
R. A.
, and
Prockop
,
D. J.
, 1977, “
Kinetics for the Secretion of Procollagen by Freshly Isolated Tendon Cells
,”
J. Biol. Chem.
0021-9258,
252
(
23
), pp.
8391
8397
.
58.
Jackson
,
Z. S.
,
Dajnowiec
,
D.
,
Gotlieb
,
A. I.
, and
Langille
,
B. L.
, 2005, “
Partial Off-Loading of Longitudinal Tension Induces Arterial Tortuosity
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
25
(
5
), pp.
957
962
.
59.
Ellsmere
,
J. C.
,
Khanna
,
R. A.
, and
Lee
,
J. M.
, 1999, “
Mechanical Loading of Bovine Pericardium Accelerates Enzymatic Degradation
,”
Biomaterials
0142-9612,
20
(
12
), pp.
1143
1150
.
60.
Ruberti
,
J. W.
, and
Hallab
,
N. J.
, 2005, “
Strain-Controlled Enzymatic Cleavage of Collagen in Loaded Matrix
,”
Biochem. Biophys. Res. Commun.
0006-291X,
336
(
2
), pp.
483
489
.
61.
Langille
,
B. L.
, 1993, “
Remodeling of Developing and Mature Arteries: Endothelium, Smooth Muscle, and Matrix
,”
J. Cardiovasc. Pharmacol.
0160-2446,
21
, pp.
S11
S17
.
62.
Langille
,
B. L.
, 1996, “
Arterial Remodeling: Relation to Hemodynamics
,”
Can. J. Physiol. Pharmacol.
0008-4212,
74
(
7
), pp.
834
841
.
63.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
, 2002, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Meth. Appl. Sci.
0218-2025,
12
(
3
), pp.
407
430
.
64.
Alberts
,
B.
,
Johnson
,
A.
,
Lewis
,
J.
,
Raff
,
M.
,
Roberts
,
K.
, and
Walter
,
P.
, 2002,
The Molecular Biology of the Cell
,
4th ed.
,
Garland Science
,
New York
.
65.
Kelleher
,
C. M.
,
McLean
,
S. E.
, and
Mecham
,
R. P.
, 2004, “
Vascular Extracellular Matrix and Aortic Development
,”
Curr. Top Dev. Biol.
0070-2153,
62
, pp.
153
188
.
66.
Meshel
,
A. S.
,
Wei
,
Q.
,
Adelstein
,
R. S.
, and
Sheetz
,
M. P.
, 2005, “
Basic Mechanism of Three-Dimensional Collagen Fibre Transport by Fibroblasts
,”
Nat. Cell Biol.
1465-7392,
7
(
2
), pp.
157
164
.
67.
Kozel
,
B. A.
,
Rongish
,
B. J.
,
Czirok
,
A.
,
Zach
,
J.
,
Little
,
C. D.
,
Davis
,
E. C.
,
Knutsen
,
R. H.
,
Wagenseil
,
J. E.
,
Levy
,
M. A.
, and
Mecham
,
R. P.
, 2006, “
Elastic Fiber Formation: A Dynamic View of Extracellular Matrix Assembly Using Timer Reporters
,”
J. Cell Physiol.
0021-9541,
207
(
1
), pp.
87
96
.
68.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer-Verlag
,
New York
.
69.
Hu
,
J. -J.
,
Baek
,
S.
, and
Humphrey
,
J. D.
, 2007, “
Stress-Strain Behavior of the Passive Basilar Artery in Normotension and Hypertension
,”
J. Biomech.
0021-9290,
40
(11), pp.
2559
2563
.
70.
Truesdell
,
C. A.
, and
Noll
,
W.
, 1965,
The Non-Linear Field Theories of Mechanics
(
Handbuch der Physik
), Vol.
III
,
Springer
,
Berlin
.
71.
Furchgott
,
R. F.
, and
Zawadzki
,
J. V.
, 1980, “
The Obligatory Role of Endothelial Cells in the Relaxation of Arterial Smooth Muscle by Acetylcholine
,”
Nature (London)
0028-0836,
288
(
5789
), pp.
373
376
.
72.
Pohl
,
U.
,
Holtz
,
J.
,
Busse
,
R.
, and
Bassenge
,
E.
, 1986, “
Crucial Role of Endothelium in the Vasodilator Response to Increased Flow In Vivo
,”
Hypertension
0194-911X,
8
(
1
), pp.
37
44
.
73.
Dajnowiec
,
D.
, and
Langille
,
B. L.
, 2007, “
Arterial Adaptations to Chronic Changes in Haemodynamic Function: Coupling Vasomotor Tone to Structural Remodelling
,”
Clin. Sci.
0323-5084,
113
(
1
), pp.
15
23
.
74.
Zarins
,
C. K.
,
Zatina
,
M. A.
,
Giddens
,
D. P.
,
Ku
,
D. N.
, and
Glagov
,
S.
, 1987, “
Shear Stress Regulation of Artery Lumen Diameter in Experimental Atherogenesis
,”
J. Vasc. Surg.
0741-5214,
5
(
3
), pp.
413
420
.
75.
Lehman
,
R. M.
,
Owens
,
G. K.
,
Kassell
,
N. F.
, and
Hongo
,
K.
, 1991, “
Mechanism of Enlargement of Major Cerebral Collateral Arteries in Rabbits
,”
Stroke
0039-2499,
22
(
4
), pp.
499
504
.
76.
Stålhand
,
J.
, and
Klarbring
,
A.
, 2005, “
Aorta In Vivo Parameter Identification Using an Axial Force Constraint
,”
Biomech. Model. Mechanobiol.
1617-7959,
3
(
4
), pp.
191
199
.
77.
Masson
,
I.
,
Boutouyrie
,
P.
,
Laurent
,
S.
,
Humphrey
,
J. D.
, and
Zidi
,
M.
, 2008, “
Characterization of Arterial Wall Mechanical Behavior and Stresses From Human Clinical Data
,”
J. Biomech.
0021-9290,
41
(
12
), pp.
2618
2627
.
78.
Nevo
,
E.
, and
Lanir
,
Y.
, 1989, “
Structural Finite Deformation Model of the Left Ventricle During Diastole and Systole
,”
J. Biomech.
0021-9290,
111
(
4
), pp.
342
349
.
79.
Humphrey
,
J. D.
, 2008, “
Vascular Adaptation and Mechanical Homeostasis at Tissue, Cellular, and Sub-Cellular Levels
,”
Cell Biochem. Biophys.
1085-9195,
50
(
2
), pp.
53
78
.
You do not currently have access to this content.