A framework is formulated within the theory of mixtures for continuum modeling of biological tissue growth that explicitly addresses cell division, using a homogenized representation of cells and their extracellular matrix (ECM). The model relies on the description of the cell as containing a solution of water and osmolytes, and having a porous solid matrix. The division of a cell into two nearly identical daughter cells is modeled as the doubling of the cell solid matrix and osmolyte content, producing an increase in water uptake via osmotic effects. This framework is also generalized to account for the growth of ECM-bound molecular species that impart a fixed charge density (FCD) to the tissue, such as proteoglycans. This FCD similarly induces osmotic effects, resulting in extracellular water uptake and osmotic pressurization of the ECM interstitial fluid, with concomitant swelling of its solid matrix. Applications of this growth model are illustrated in several examples.

1.
Hsu
,
F. H.
, 1968, “
The Influences of Mechanical Loads on the Form of a Growing Elastic Body
,”
J. Biomech.
0021-9290,
1
(
4
), pp.
303
311
.
2.
Cowin
,
S. C.
, and
Hegedus
,
D. H.
, 1976, “
Bone Remodeling—1. Theory of Adaptive Elasticity
,”
J. Elast.
0374-3535,
6
(
3
), pp.
313
326
.
3.
Skalak
,
R.
,
Dasgupta
,
G.
,
Moss
,
M.
,
Otten
,
E.
,
Dullumeijer
,
P.
, and
Vilmann
,
H.
, 1982, “
Analytical Description of Growth
,”
J. Theor. Biol.
0022-5193,
94
(
3
), pp.
555
577
.
4.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
, 1994, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
0021-9290,
27
(
4
), pp.
455
467
.
5.
Epstein
,
M.
, and
Maugin
,
G. A.
, 2000, “
Thermomechanics of Volumetric Growth in Uniform Bodies
,”
Int. J. Plast.
0749-6419,
16
(
7–8
), pp.
951
978
.
6.
Klisch
,
S.
,
Van Dyke
,
T.
, and
Hoger
,
A.
, 2001, “
A Theory of Volumetric Growth for Compressible Elastic Biological Materials
,”
Math. Mech. Solids
1081-2865,
6
(
6
), pp.
551
575
.
7.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
, 2002, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Meth. Appl. Sci.
0218-2025,
12
(
3
), pp.
407
430
.
8.
Garikipati
,
K.
,
Arruda
,
E.
,
Grosh
,
K.
,
Narayanan
,
H.
, and
Calve
,
S.
, 2004, “
A Continuum Treatment of Growth in Biological Tissue: The Coupling of Mass Transport and Mechanics
,”
J. Mech. Phys. Solids
0022-5096,
52
(
7
), pp.
1595
1625
.
9.
Volokh
,
K. Y.
, 2004, “
Mathematical Framework for Modeling Tissue Growth
,”
Biorheology
0006-355X,
41
(
3–4
), pp.
263
269
.
10.
Guillou
,
A.
, and
Ogden
,
R. W.
, 2006, “
Growth in Soft Biological Tissue and Residual Stress Development
,”
Mechanics of Biological Tissue
,
G. A.
Holzapfel
and
R. W.
Ogden
, eds.,
Springer
,
New York
, pp.
47
62
.
11.
Klisch
,
S. M.
,
Chen
,
S. S.
,
Sah
,
R. L.
, and
Hoger
,
A.
, 2003, “
A Growth Mixture Theory for Cartilage With Application to Growth-Related Experiments on Cartilage Explants
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
2
), pp.
169
179
.
12.
Dimicco
,
M. A.
, and
Sah
,
R. L.
, 2003, “
Dependence of Cartilage Matrix Composition on Biosynthesis, Diffusion, and Reaction
,”
Transp. Porous Media
0169-3913,
50
(
1–2
), pp.
57
73
.
13.
Radisic
,
M.
,
Deen
,
W.
,
Langer
,
R.
, and
Vunjak-Novakovic
,
G.
, 2005, “
Mathematical Model of Oxygen Distribution in Engineered Cardiac Tissue With Parallel Channel Array Perfused With Culture Medium Containing Oxygen Carriers
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
288
(
3
), pp.
H1278
H1289
.
14.
Lemon
,
G.
,
King
,
J. R.
,
Byrne
,
H. M.
,
Jensen
,
O. E.
, and
Shakesheff
,
K. M.
, 2006, “
Mathematical Modelling of Engineered Tissue Growth Using a Multiphase Porous Flow Mixture Theory
,”
J. Math. Biol.
0303-6812,
52
(
5
), pp.
571
594
.
15.
Cosgrove
,
D.
, 1986, “
Biophysical Control of Plant Cell Growth
,”
Annu. Rev. Plant Physiol.
0066-4294,
37
, pp.
377
405
.
16.
Kedem
,
O.
, and
Katchalsky
,
A.
, 1958, “
Thermodynamic Analysis of the Permeability of Biological Membranes to Non-Electrolytes
,”
Biochim. Biophys. Acta
0006-3002,
27
(
2
), pp.
229
246
.
17.
Ateshian
,
G. A.
,
Likhitpanichkul
,
M.
, and
Hung
,
C. T.
, 2006, “
A Mixture Theory Analysis for Passive Transport in Osmotic Loading of Cells
,”
J. Biomech.
0021-9290,
39
(
3
), pp.
464
475
.
18.
Albro
,
M. B.
,
Chahine
,
N. O.
,
Caligaris
,
M.
,
Wei
,
V. I.
,
Likhitpanichkul
,
M.
,
Ng
,
K. W.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2007, “
Osmotic Loading of Spherical Gels: A Biomimetic Study of Hindered Transport in the Cell Protoplasm
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
4
), pp.
503
510
.
19.
Haider
,
M. A.
,
Schugart
,
R. C.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2006, “
A Mechano-Chemical Model for the Passive Swelling Response of an Isolated Chondron Under Osmotic Loading
,”
Biomech. Model. Mechanobiol.
1617-7959,
5
(
2–3
), pp.
160
171
.
20.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
3
), pp.
245
258
.
21.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
, 1997, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
0020-7225,
35
(
8
), pp.
793
802
.
22.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1998, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-Electrolytes: Passive Transport and Swelling Behaviors
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
2
), pp.
169
180
.
23.
Mauck
,
R. L.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2003, “
Modeling of Neutral Solute Transport in a Dynamically Loaded Porous Permeable Gel: Implications for Articular Cartilage Biosynthesis and Tissue Engineering
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
5
), pp.
602
614
.
24.
Truesdell
,
C.
, and
Toupin
,
R.
, 1960. “
The Classical Field Theories
,”
Handbuch der Physik
, Vol.
III/1
,
S.
Flugge
, ed.,
Springer-Verlag
,
Berlin
.
25.
Bowen
,
R. M.
, 1976, “
Theory of Mixtures
,”
Continuum Physics
, Vol.
3
,
A. E.
Eringen
, ed.,
Academic
,
New York
, pp.
1
127
.
26.
Bowen
,
R. M.
, 1980, “
Incompressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
0020-7225,
18
(
9
), pp.
1129
1148
.
27.
Bowen
,
R. M.
, 1969, “
The Thermochemistry of a Reacting Mixture of Elastic Materials With Diffusion
,”
Arch. Ration. Mech. Anal.
0003-9527,
34
(
2
), pp.
97
127
.
28.
Ateshian
,
G. A.
, 2007, “
On the Theory of Reactive Mixtures for Modeling Biological Growth
,”
Biomech. Model. Mechanobiol.
1617-7959,
6
(
6
), pp.
423
445
.
29.
Katzir-Katchalsky
,
A.
, and
Curran
,
P. F.
, 1965, “
Nonequilibrium Thermodynamics in Biophysics
,”
Harvard Books in Biophysics
, Vol.
1
,
Harvard University Press
,
Cambridge
.
30.
Tinoco
,
I.
, Jr.
,
Sauer
,
K.
, and
Wang
,
J. C.
, 1995,
Physical Chemistry: Principles and Applications in Biological Sciences
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
31.
Nobel
,
P. S.
, 1969, “
The Boyle-Van’t Hoff Relation
,”
J. Theor. Biol.
0022-5193,
23
(
3
), pp.
375
379
.
32.
Weiss
,
T. F.
, 1996,
Cellular Biophysics
,
MIT
,
Cambridge, MA
.
33.
McManus
,
M. L.
,
Churchwell
,
K. B.
, and
Strange
,
K.
, 1995, “
Regulation of Cell Volume in Health and Disease
,”
N. Engl. J. Med.
0028-4793,
333
(
19
), pp.
1260
1266
.
34.
Delesse
,
A.
, 1847, “
Procédé Mécanique pour Déterminer la Composition des Roches
,”
C.R. [Hebd. Séanc.] Acad. Sci., Paris
, 4, pp. 544–545.
35.
Bonet
,
J.
, and
Wood
,
R. D.
, 1997,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge
.
36.
Azeloglu
,
E. U.
,
Albro
,
M. B.
,
Thimmappa
,
V. A.
,
Ateshian
,
G. A.
, and
Costa
,
K. D.
, 2008, “
Heterogeneous Transmural Proteoglycan Distribution Provides a Mechanism for Regulating Residual Stresses in the Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
294
(
3
), pp.
H1197
H205
.
37.
Carter
,
D. R.
, and
Hayes
,
W. C.
, 1976, “
Bone Compressive Strength: The Influence of Density and Strain Rate
,”
Science
0036-8075,
194
(
4270
), pp.
1174
1176
.
38.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1997.
Cellular Solids: Structure and Properties
(
Cambridge Solid State Science Series
),
2nd ed.
,
Cambridge University Press
,
Cambridge
.
39.
Mow
,
V. C.
, and
Huiskes
,
R.
, 2005,
Basic Orthopaedic Biomechanics & Mechano-Biology
,
3rd ed.
,
Lippincott Williams & Wilkins
,
Philadelphia, PA
.
40.
Wight
,
T. N.
, and
Ross
,
R.
, 1975, “
Proteoglycans in Primate Arteries. I. Ultrastructural Localization and Distribution in the Intima
,”
J. Cell Biol.
0021-9525,
67
(
3
), pp.
660
674
.
41.
Yao
,
L. Y.
,
Moody
,
C.
,
Schonherr
,
E.
,
Wight
,
T. N.
, and
Sandell
,
L. J.
, 1994, “
Identification of the Proteoglycan Versican in Aorta and Smooth Muscle Cells by DNA Sequence Analysis, In Situ Hybridization and Immunohistochemistry
,”
Matrix Biol.
0945-053X,
14
(
3
), pp.
213
225
.
42.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1986, “
On Residual Stresses in Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
108
(
2
), pp.
189
192
.
43.
Porterfield
,
S. P.
,
Calhoon
,
T. B.
, and
Weiss
,
H. S.
, 1968, “
Changes in Connective Tissue Colloidal Charge Density With Atherosclerosis and Age
,”
Am. J. Physiol.
0002-9513,
215
(
2
), pp.
324
329
.
44.
Volker
,
W.
,
Schmidt
,
A.
,
Oortmann
,
W.
,
Broszey
,
T.
,
Faber
,
V.
, and
Buddecke
,
E.
, 1990, “
Mapping of Proteoglycans in Atherosclerotic Lesions
,”
Eur. Heart J.
0195-668X,
11
, pp.
29
40
.
45.
Evanko
,
S. P.
,
Raines
,
E. W.
,
Ross
,
R.
,
Gold
,
L. I.
, and
Wight
,
T. N.
, 1998, “
Proteoglycan Distribution in Lesions of Atherosclerosis Depends on Lesion Severity, Structural Characteristics, and the Proximity of Platelet-Derived Growth Factor and Transforming Growth Factor-Beta
,”
Am. J. Pathol.
0002-9440,
152
(
2
), pp.
533
546
.
46.
Matsumoto
,
T.
,
Hayashi
,
K.
, and
Ide
,
K.
, 1995, “
Residual Strain and Local Strain Distributions in the Rabbit Atherosclerotic Aorta
,”
J. Biomech.
0021-9290,
28
(
10
), pp.
1207
1217
.
47.
Valenta
,
J.
,
Svoboda
,
J.
,
Valerianova
,
D.
, and
Vitek
,
K.
, 1999, “
Residual Strain in Human Atherosclerotic Coronary Arteries and Age Related Geometrical Changes
,”
Biomed. Mater. Eng.
0959-2989,
9
(
5–6
), pp.
311
317
.
48.
Gregersen
,
H.
,
Zhao
,
J.
,
Lu
,
X.
,
Zhou
,
J.
, and
Falk
,
E.
, 2007, “
Remodelling of the Zero-Stress State and Residual Strains in apoE-Deficient Mouse Aorta
,”
Biorheology
0006-355X,
44
(
2
), pp.
75
89
.
49.
Treggiari
,
M. M.
,
Schutz
,
N.
,
Yanez
,
N. D.
, and
Romand
,
J. A.
, 2007, “
Role of Intracranial Pressure Values and Patterns in Predicting Outcome in Traumatic Brain Injury: A Systematic Review
,”
Neurocrit. Care
,
6
(
2
), pp.
104
112
. 1541-6933
50.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
, 2003, “
A Constrained Mixture Model for Arterial Adaptations to a Sustained Step Change in Blood Flow
,”
Biomech. Model. Mechanobiol.
1617-7959,
2
(
2
), pp.
109
126
.
51.
Guo
,
X.
,
Lanir
,
Y.
, and
Kassab
,
G. S.
, 2007, “
Effect of Osmolarity on the Zero-Stress State and Mechanical Properties of Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
293
(
4
), pp.
H2328
H2334
.
52.
Guilak
,
F.
, and
Mow
,
V. C.
, 2000, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
0021-9290,
33
(
12
), pp.
1663
1673
.
53.
Rangel-Castilla
,
L.
,
Gopinath
,
S.
, and
Robertson
,
C. S.
, 2008, “
Management of Intracranial Hypertension
,”
Neurol. Clin.
0733-8619,
26
(
2
), pp.
521
541
.
54.
Skalak
,
R.
,
Farrow
,
D. A.
, and
Hoger
,
A.
, 1997, “
Kinematics of Surface Growth
,”
J. Math. Biol.
0303-6812,
35
(
8
), pp.
869
907
.
This content is only available via PDF.
You do not currently have access to this content.