We consider a simplified characterization of the postural control system that embraces two broad components: one representing the musculoskeletal dynamics in the sagittal plane and the other representing proprioceptive feedback and the central nervous system (CNS). Specifically, a planar four-segment neuromusculoskeletal model consisting of the ankle, knee, and hip degrees-of-freedom (DOFs) is described in this paper. The model includes important physiological constructs such as Hill-type muscle model, active and passive muscle stiffnesses, force feedback from the Golgi tendon organ, muscle length and rate feedback from the muscle spindle, and transmission latencies in the neural pathways. A proportional-integral-derivative (PID) controller for each individual DOF is assumed to represent the CNS analog in the modeling paradigm. Our main hypothesis states that all stabilizing PID controllers for such multisegment biomechanical models can be parametrized and analytically synthesized. Our analytical and simulation results show that the proposed representation adequately shapes a postural control that (a) possesses good disturbance rejection and trajectory tracking, (b) is robust against feedback latencies and torque perturbations, and (c) is flexible to embrace changes in the musculoskeletal parameters. We additionally present detailed sensitivity analysis to show that control under conditions of limited or no proprioceptive feedback results in (a) significant reduction in the stability margins, (b) substantial decrease in the available stabilizing parameter set, and (c) oscillatory movement trajectories. Overall, these results suggest that anatomical arrangement, active muscle stiffness, force feedback, and physiological latencies play a major role in shaping motor control processes in humans.

1.
Sherrington
,
C. S.
, 1910, “
Flexion-Reflex of the Limb, Crossed Extension Reflex, and Reflex Stepping and Standing
,”
J. Physiol. (London)
,
40
, pp.
28
121
. 0022-3751
2.
Hemami
,
H.
, 1980, “
A Feedback On-Off Model of Biped Dynamics
,”
IEEE Trans. Syst. Man Cybern.
,
10
, pp.
376
383
. 0018-9472
3.
Hatze
,
H.
, 1981, “
A Comprehensive Model for Human Motion Simulation and Its Application to the Take-Off Phase of the Long Jump
,”
J. Biomech.
,
14
, pp.
135
142
. 0021-9290
4.
Nashner
,
L. M.
, 1971, “
A Model Describing Vestibular Detection of Body Sway Motion
,”
Acta Oto-Laryngol.
,
72
, pp.
429
436
. 0001-6489
5.
Nashner
,
L. M.
, 1972, “
Vestibular Postural Control Model
,”
Kybernetik
,
10
, pp.
106
109
. 0023-5946
6.
Hemami
,
H.
, and
Golliday
,
C. L.
, 1977, “
The Inverted Pendulum and Biped Stability
,”
Math. Biosci.
0025-5564,
34
, pp.
95
110
.
7.
Hemami
,
H.
, and
Katbab
,
A.
, 1982, “
Constrained Inverted Pendulum Model of Evaluating Upright Postural Stability
,”
ASME J. Dyn. Syst., Meas., Control
,
104
, pp.
343
349
. 0022-0434
8.
Barin
,
K.
, 1989, “
Evaluation of a Generalized Model of Human Postural Dynamics and Control in the Sagittal Plane
,”
Biol. Cybern.
0340-1200,
61
, pp.
37
50
.
9.
He
,
J.
,
Levine
,
W. S.
, and
Loeb
,
G. E.
, 1991, “
Feedback Gains for Correcting Small Perturbations to Standing Posture
,”
IEEE Trans. Autom. Control
0018-9286,
36
, pp.
322
332
.
10.
Kuo
,
A. D.
, 1995, “
An Optimal Control Model for Analyzing Human Postural Balance
,”
IEEE Trans. Biomed. Eng.
0018-9294,
42
, pp.
87
101
.
11.
Zajac
,
F. E.
, 1989, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
CRC Crit. Rev. Bioeng.
0045-642X,
17
, pp.
369
411
.
12.
Yang
,
J. F.
,
Winter
,
D. A.
, and
Wells
,
R. P.
, 1990, “
Postural Dynamics in the Standing Human
,”
Biol. Cybern.
,
62
, pp.
309
320
. 0340-1200
13.
Schaal
,
S.
, and
Schweighofer
,
N.
, 2005, “
Computational Motor Control in Humans and Robots
,”
Curr. Opin. Neurobiol.
0959-4388,
15
, pp.
675
682
.
14.
Winters
,
J. M.
, and
Stark
,
L.
, 1985, “
Analysis of Fundamental Human Movement Patterns Through the Use of In-Depth Antagonistic Muscle Models
,”
IEEE Trans. Biomed. Eng.
0018-9294,
BME-32
, pp.
826
839
.
15.
Stroeve
,
S. H.
, 1998, “
Impedance Characteristics of a Neuromusculoskeletal Model of the Human Arm: I. Posture Control
,” Ph.D. thesis, Delft University of Technology, Delft.
16.
Brown
,
I. E.
, and
Loeb
,
G. E.
, 2000, “
A Reductionist Approach to Creating and Using Neuromusculoskeletal Models
,”
Biomechanics and Neural Control of Movement and Posture
,
J. M.
Winters
and
P. E.
Crago
, eds.,
Springer
,
New York
, pp.
148
163
.
17.
Van der Helm
,
F.
, and
Rozendaal
,
L.
, 2000, “
Musculoskeletal Systems With Intrinsic and Proprioceptive Feedback
,”
Biomechanics and Neural Control of Movement and Posture
,
J. M.
Winters
and
P. E.
Crago
, eds.,
Springer
,
New York
, pp.
164
174
.
18.
Roy
,
A.
, and
Iqbal
,
K.
, 2003, “
PID Controller Stabilization of a Single-Link Biomechanical Model With Multiple Delayed Feedbacks
,”
Proceedings of the IEEE Conference on Systems, Man, and Cybernatics
, Washington, DC, Vol.
1
, pp.
642
647
.
19.
Iqbal
,
K.
, and
Roy
,
A.
, 2004, “
Stabilizing PID Controllers for a Single-Link Biomechanical Model With Position, Velocity, and Force Feedback
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
6
), pp.
838
843
.
20.
Pai
,
Y.-C.
, and
Iqbal
,
K.
, 1999, “
Simulated Movement Termination for Balance Recovery: Can Movement Strategies be Sought to Maintain Stability Even in the Presence of Slipping or Forced Sliding
?”
J. Biomech.
0021-9290,
32
, pp.
779
786
.
21.
Stapley
,
P. J.
,
Ting
,
L. H.
,
Hulliger
,
M.
, and
Macpherson
,
J. M.
, 2002, “
Automatic Postural Responses to Support Surface Translation are Delayed by Pyridoxine-Induced Proprioceptive Loss
,”
J. Neurosci.
,
22
, pp.
5803
5807
. 0270-6474
22.
Hemami
,
H.
, and
Jaswa
,
V. C.
, 1978, “
On a Three-Link Model of the Dynamics of Standing Up and Sitting Down
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
8
, pp.
115
120
.
23.
Peterka
,
R. J.
, 2002, “
Sensorimotor Integration in Human Postural Control
,”
J. Neurophysiol.
,
88
, pp.
1097
1118
. 0022-3077
24.
Iqbal
,
K.
, and
Pai
,
Y. C.
, 2000, “
Predicted Region of Stability for Balance Recovery: Motion at the Knee Joint Can Improve Termination of Forward Movement
,”
J. Biomech.
0021-9290,
33
, pp.
1619
1627
.
25.
Hill
,
A. V.
, 1938, “
The Heat of Shortening and the Dynamic Constants of the Muscle
,”
Proc. R. Soc. London, Ser. B
,
126
, pp.
136
195
. 0962-8452
26.
Winters
,
J. M.
, 1990, “
Hill-Based Muscle Models: A Systems Engineering Perspective
,”
Multiple Muscle Systems: Biomechanics and Movement Organization
,
J. M.
Winters
and
S. L.-Y.
Woo
, eds.,
Springer-Verlag
,
New York
, pp.
69
93
.
27.
Crago
,
P. E.
, 2000, “
Creating Neuromusculoskeletal Models
,”
Biomechanics and Neural Control of Movement and Posture
,
J. M.
Winters
and
P. E.
Crago
, eds.,
Springer
,
New York
, pp.
164
174
.
28.
Stroeve
,
S.
, 1999, “
Impedance Characteristics of a Neuromusculoskeletal Model of the Human Arm. I. Posture Control
,”
Biol. Cybern.
0340-1200,
81
, pp.
475
495
.
29.
Hasan
,
Z.
, and
Houk
,
J. C.
, 1975, “
Transition in Sensitivity of Spindle Receptors That Occurs When Muscle is Stretched More Than a Fraction of a Millimeter
,”
J. Neurophysiol.
,
38
, pp.
673
689
. 0022-3077
30.
Loeb
,
G. E.
, and
Mileusnic
,
M.
, 2001, “
Development of a Muscle Spindle Model
,”
Society of Neuroscience Abstract
, Paper No. 301.5.
31.
Rozendaal
,
L. A.
, 1997, “
Stability of the Shoulder: Intrinsic Muscle Properties and Reflexive Control
,” Ph.D. thesis, Delft University of Technology, Delft.
32.
Crago
,
P. E.
,
Houk
,
J. C.
, and
Rymer
,
W. Z.
, 1982, “
Sampling of Total Muscle Force by Tendon Organs
,”
J. Neurophysiol.
,
47
, pp.
1069
1083
. 0022-3077
33.
Roy
,
A.
, and
Iqbal
,
K.
, 2005, “
Synthesis of Stabilizing PID Controllers Using Generalized Hermite-Biehler Theorem
,”
Proceedings of the IFAC World Congress
, Prague, Czech Republic, Vol.
1
, pp.
1
6
.
34.
Goodwin
,
G. C.
,
Stefan
,
F. G.
, and
Mario
,
E. S.
, 2004,
Control System Design
,
Prentice-Hall
,
New Jersey
, p.
127
.
35.
Roy
,
A.
, 2005, “
Theoretical Framework for Stability Analysis and Controller Synthesis in the Case of a Multi-Segment Biomechanical Model
,” Ph.D. thesis, University of Arkansas at Little Rock, Little Rock.
36.
Kuo
,
A. D.
, and
Zajac
,
F. E.
, 1993, “
A Biomechanical Analysis of Muscle Strength as a Limiting Factor in Standing Posture
,”
J. Biomech.
,
26
, pp.
137
150
. 0021-9290
37.
Horak
,
F. B.
, and
Macpherson
,
J. M.
, 1996, “
Postural Orientation and Equilibrium
,”
Handbook of Physiology
,
J. L.
Smith
, ed.,
Oxford University Press
,
New York
, Sec. 12, pp.
255
292
.
38.
Horak
,
F.
, and
Kuo
,
A.
, 2000, “
Postural Adaptation for Altered Environments, Tasks, and Intentions
,”
Biomechanics and Neural Control of Movement and Posture
,
J. M.
Winters
and
P. E.
Crago
, eds.,
Springer
,
New York
, pp.
267
281
.
39.
Sinkjaer
,
T. S.
,
Toft
,
E.
,
Andreassen
,
S.
, and
Hornemann
,
B. C.
, 1988, “
Muscle Stiffness in Human Ankle Dorsiflexors: Intrinsic and Reflex Components
,”
J. Neurophysiol.
,
60
, pp.
1110
1121
. 0022-3077
40.
Johansson
,
R.
,
Magnusson
,
M.
, and
Akesson
,
M.
, 1988, “
Identification of Human Postural Dynamics
,”
IEEE Trans. Biomed. Eng.
0018-9294,
35
, pp.
858
869
.
41.
Khalil
,
H.
, 2002,
Nonlinear Systems
,
3rd ed.
,
Prentice-Hall
,
New Jersey
, p.
217
.
You do not currently have access to this content.