Chondrocytes, the cells in articular cartilage, are enclosed within a pericellular matrix (PCM) whose composition and structure differ from those of the extracellular matrix (ECM). Since the PCM surrounds each cell, molecules that interact with the chondrocyte must pass through the pericellular environment. A quantitative understanding of the diffusional properties of the PCM may help in elucidating the regulatory role of the PCM in controlling transport to and from the chondrocyte. The diffusivities of fluorescently labeled 70 kDa and 500 kDa dextrans were quantified within the PCM of porcine articular cartilage using a newly developed mathematical model of scanning microphotolysis (SCAMP). SCAMP is a rapid line photobleaching method that accounts for out-of-plane bleaching attributable to high magnification. Data were analyzed by a best-fit comparison to simulations generated using a discretization of the diffusion-reaction equation in conjunction with the microscope-specific three-dimensional excitation and detection profiles. The diffusivity of the larger molecule (500 kDa dextran) was significantly lower than that of the smaller molecule (70 kDa dextran), and values were consistent with those reported previously using standard techniques. Furthermore, for both dextran sizes, the diffusion coefficient was significantly lower in the PCM than in the ECM; however, this difference was not detected in early-stage arthritic tissue. We have successfully modified the SCAMP technique to measure diffusion coefficients within the small volume of the PCM using confocal laser scanning microscopy. Our results support the hypothesis that diffusivity within the PCM of healthy articular cartilage is lower than that within the ECM, presumably due to differences in proteoglycan content.

1.
Center for Disease Control and Prevention
, 2006, “
Prevalence of Doctor-Diagnosed Arthritis and Arthritis-Attributable Activity Limitation—United States, 2003–2005
,”
MMWR Morb Mortal Wkly Rep.
0149-2195,
55
(
40
), pp.
1089
1092
.
2.
Heinegard
,
D.
, and
Oldberg
,
A.
, 1989, “
Structure and Biology of Cartilage and Bone Matrix Noncollagenous Macromolecules
,”
FASEB J.
,
3
(
9
), pp.
2042
2051
. 0892-6638
3.
Mow
,
V. C.
,
Ratcliffe
,
A.
, and
Poole
,
A. R.
, 1992, “
Cartilage and Diarthrodial Joints as Paradigms for Hierarchical Materials and Structures
,”
Biomaterials
0142-9612,
13
(
2
), pp.
67
97
.
4.
Leddy
,
H. A.
, and
Guilak
,
F.
, 2003, “
Site-Specific Molecular Diffusion in Articular Cartilage Measured Using Fluorescence Recovery After Photobleaching
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
753
760
.
5.
Maroudas
,
A.
, 1976, “
Transport of Solutes Through Cartilage: Permeability to Large Molecules
,”
J. Anat.
,
122
(
2
), pp.
335
347
. 0021-8782
6.
Quinn
,
T. M.
,
Kocian
,
P.
, and
Meister
,
J. J.
, 2000, “
Static Compression is Associated With Decreased Diffusivity of Dextrans in Cartilage Explants
,”
Arch. Biochem. Biophys.
0003-9861,
384
(
2
), pp.
327
334
.
7.
Torzilli
,
P. A.
,
Adams
,
T. C.
, and
Mis
,
R. J.
, 1987, “
Transient Solute Diffusion in Articular Cartilage
,”
J. Biomech.
0021-9290,
20
(
2
), pp.
203
214
.
8.
Torzilli
,
P. A.
,
Arduino
,
J. M.
,
Gregory
,
J. D.
, and
Bansal
,
M.
, 1997, “
Effect of Proteoglycan Removal on Solute Mobility in Articular Cartilage
,”
J. Biomech.
0021-9290,
30
(
9
), pp.
895
902
.
9.
Torzilli
,
P. A.
, 1993, “
Effects of Temperature, Concentration and Articular Surface Removal on Transient Solute Diffusion in Articular Cartilage
,”
Med. Biol. Eng. Comput.
,
31
, pp.
S93
S98
. 0140-0118
10.
Leddy
,
H. A.
,
Haider
,
M. A.
, and
Guilak
,
F.
, 2006, “
Diffusional Anisotropy in Collagenous Tissues: Fluorescence Imaging of Continuous Point Photobleaching
,”
Biophys. J.
,
91
(
1
), pp.
311
316
. 0006-3495
11.
Evans
,
R. C.
, and
Quinn
,
T. M.
, 2005, “
Solute Diffusivity Correlates With Mechanical Properties and Matrix Density of Compressed Articular Cartilage
,”
Arch. Biochem. Biophys.
,
442
(
1
), pp.
1
10
. 0003-9861
12.
Leddy
,
H. A.
,
Awad
,
H. A.
, and
Guilak
,
F.
, 2004, “
Molecular Diffusion in Tissue-Engineered Cartilage Constructs: Effects of Scaffold Material, Time, and Culture Conditions
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
70
(
2
), pp.
397
406
.
13.
Poole
,
A. R.
,
Rosenberg
,
L. C.
,
Reiner
,
A.
,
Ionescu
,
M.
,
Bogoch
,
E.
, and
Roughley
,
P. J.
, 1996, “
Contents and Distributions of the Proteoglycans Decorin and Biglycan in Normal and Osteoarthritic Human Articular Cartilage
,”
J. Orthop. Res.
,
14
(
5
), pp.
681
689
. 0736-0266
14.
Poole
,
C.
, 1997, “
Articular Cartilage Chondrons: Form, Function and Failure
,”
J. Anat.
0021-8782,
191
(
1
), pp.
1
13
.
15.
Poole
,
C. A.
,
Ayad
,
S.
, and
Gilbert
,
R. T.
, 1992, “
Chondrons From Articular Cartilage, V: Immunohistochemical Evaluation of Type VI Collagen Organisation in Isolated Chondrons by Light, Confocal and Electron Microscopy
,”
J. Cell. Sci.
,
103
, pp.
1101
1110
. 0021-9533
16.
Poole
,
C. A.
,
Ayad
,
S.
, and
Schofield
,
J. R.
, 1988, “
Chondrons From Articular Cartilage: I. Immunolocalization of Type VI Collagen in the Pericellular Capsule of Isolated Canine Tibial Chondrons
,”
J. Cell. Sci.
,
90
, pp.
635
643
. 0021-9533
17.
Poole
,
C. A.
,
Honda
,
T.
,
Skinner
,
S. J.
,
Schofield
,
J. R.
,
Hyde
,
K. F.
, and
Shinkai
,
H.
, 1990, “
Chondrons From Articular Cartilage (II): Analysis of the Glycosaminoglycans in the Cellular Microenvironment of Isolated Canine Chondrons
,”
Connect. Tissue Res.
,
24
(
3
), pp.
319
330
. 0300-8207
18.
Poole
,
C. A.
,
Matsuoka
,
A.
, and
Schofield
,
J. R.
, 1991, “
Chondrons From Articular Cartilage, III: Morphologic Changes in the Cellular Microenvironment of Chondrons Isolated From Osteoarthritic Cartilage
,”
Arthritis Rheum.
,
34
(
1
), pp.
22
35
. 0004-3591
19.
Alexopoulos
,
L. G.
,
Haider
,
M. A.
,
Vail
,
T. P.
, and
Guilak
,
F.
, 2003, “
Alterations in the Mechanical Properties of the Human Chondrocyte Pericellular Matrix With Osteoarthritis
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
3
), pp.
323
333
.
20.
Alexopoulos
,
L. G.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2005, “
The Biomechanical Role of the Chondrocyte Pericellular Matrix in Articular Cartilage
,”
Acta Biomater.
,
1
(
3
), pp.
317
325
. 1742-7061
21.
Alexopoulos
,
L. G.
,
Williams
,
G. M.
,
Upton
,
M. L.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2005, “
Osteoarthritic Changes in the Biphasic Mechanical Properties of the Chondrocyte Pericellular Matrix in Articular Cartilage
,”
J. Biomech.
0021-9290,
38
(
3
), pp.
509
517
.
22.
Guilak
,
F.
, and
Mow
,
V. C.
, 2000, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
0021-9290,
33
(
12
), pp.
1663
1673
.
23.
Haider
,
M. A.
,
Schugart
,
R. C.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2006, “
A Mechano-Chemical Model for the Passive Swelling Response of an Isolated Chondron Under Osmotic Loading
,”
Biomech. Model. Mechanobiol.
,
5
(
2–3
), pp.
160
171
. 1617-7959
24.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
, and
Hunziker
,
E. B.
, 1995, “
Mechanical Compression Modulates Matrix Biosynthesis in Chondrocyte/Agarose Culture
,”
J. Cell. Sci.
,
108
, pp.
1497
1508
. 0021-9533
25.
Choi
,
J. B.
,
Youn
,
I.
,
Cao
,
L.
,
Leddy
,
H. A.
,
Gilchrist
,
C. L.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2007, “
Zonal Changes in the Three-Dimensional Morphology of the Chondron Under Compression: The Relationship among Cellular, Pericellular, and Extracellular Deformation in Articular Cartilage
,”
J. Biomech.
,
40
(
12
), pp.
2596
2603
. 0021-9290
26.
Guilak
,
F.
,
Alexopoulos
,
L. G.
,
Upton
,
M. L.
,
Youn
,
I.
,
Choi
,
J. B.
,
Cao
,
L.
,
Setton
,
L. A.
, and
Haider
,
M. A.
, 2006, “
The Pericellular Matrix as a Transducer of Biomechanical and Biochemical Signals in Articular Cartilage
,”
Ann. N.Y. Acad. Sci.
0077-8923,
1068
, pp.
498
512
.
27.
Lee
,
G. M.
,
Zhang
,
F.
,
Ishihara
,
A.
,
McNeil
,
C. L.
, and
Jacobson
,
K. A.
, 1993, “
Unconfined Lateral Diffusion and an Estimate of Pericellular Matrix Viscosity Revealed by Measuring the Mobility of Gold-Tagged Lipids
,”
J. Cell Biol.
,
120
(
1
), pp.
25
35
. 0021-9525
28.
Youn
,
I.
,
Choi
,
J. B.
,
Cao
,
L.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2006, “
Zonal Variations in the Three-Dimensional Morphology of the Chondron Measured In Situ Using Confocal Microscopy
,”
Osteoarthritis Cartilage
,
14
(
9
), pp.
889
897
. 1063-4584
29.
Maroudas
,
A.
, 1970, “
Distribution and Diffusion of Solutes in Articular Cartilage
,”
Biophys. J.
,
10
(
5
), pp.
365
379
. 0006-3495
30.
Axelrod
,
D.
,
Koppel
,
D. E.
,
Schlessinger
,
J.
,
Elson
,
E.
, and
Webb
,
W. W.
, 1976, “
Mobility Measurement by Analysis of Fluorescence Photobleaching Recovery Kinetics
,”
Biophys. J.
,
16
, pp.
1055
1069
. 0006-3495
31.
Tsay
,
T. T.
, and
Jacobson
,
K. A.
, 1991, “
Spatial Fourier Analysis of Video Photobleaching Measurements. Principles and Optimization
,”
Biophys. J.
,
60
(
2
), pp.
360
368
. 0006-3495
32.
Sniekers
,
Y. H.
, and
Van Donkelaar
,
C. C.
, 2005, “
Determining Diffusion Coefficients in Inhomogeneous Tissues Using Fluorescence Recovery After Photobleaching
,”
Biophys. J.
0006-3495,
89
(
2
), pp.
1302
1307
.
33.
Kubitscheck
,
U.
,
Wedekind
,
P.
, and
Peters
,
R.
, 1998, “
Three-Dimensional Diffusion Measurements by Scanning Microphotolysis
,”
J. Microsc.
0022-2720,
192
(
2
), pp.
126
138
.
34.
Douglas
,
J. J.
, and
Gunn
,
J. E.
, 1964, “
A General Formulation of Alternating Direction Methods. I. Parabolic and Hyperbolic Problems
,”
Numer. Math.
0029-599X,
6
, pp.
428
453
.
35.
Shaw
,
P. J.
, and
Rawlins
,
D. J.
, 1991, “
The Point-Spread Function of a Confocal Microscope: Its Measurement and Use in Deconvolution of 3D Data
,”
J. Microsc.
0022-2720,
163
, pp.
151
165
.
36.
Conchello
,
J.-A.
, 1998, “
Super-Resolution and Convergence Properties of the Expectation-Maximization Algorithm for Maximum-Likelihood Deconvolution of Incoherent Images
,”
J. Opt. Soc. Am. A
0740-3232,
15
(
10
), pp.
2609
2620
.
37.
Conchello
,
J.-A.
, 1995,
“Fluorescence Photobleaching Correction for Expectation Maximization Algorithm,”
Proc. SPIE
0277-786X,
2412
(
21
), pp.
138
146
.
38.
Conchello
,
J.-A.
,
Kim
,
J. J.
, and
Hansen
,
E. W.
, 1994, “
Enhanced Three-Dimensional Reconstruction From Confocal Scanning Microscope Images. II. Depth Discrimination Versus Signal-to-Noise Ratio in Partically Confocal Images
,”
Appl. Opt.
,
33
(
17
), pp.
3740
3750
. 0003-6935
39.
Muehleman
,
C.
,
Bareither
,
D.
,
Huch
,
K.
,
Cole
,
A. A.
, and
Kuettner
,
K. E.
, 1997, “
Prevalence of Degenerative Morphological Changes in the Joints of the Lower Extremity
,”
Osteoarthritis Cartilage
,
5
(
1
), pp.
23
37
. 1063-4584
40.
Gennerich
,
A.
, and
Schild
,
D.
, 2002, “
Anisotropic Diffusion in Mitral Cell Dendrites Revealed by Fluorescence Correlation Spectroscopy
,”
Biophys. J.
,
83
(
1
), pp.
510
522
. 0006-3495
41.
Kinsey
,
S. T.
,
Locke
,
B. R.
,
Penke
,
B.
, and
Moerland
,
T. S.
, 1999, “
Diffusional Anisotropy is Induced by Subcellular Barriers in Skeletal Muscle
,”
NMR Biomed.
,
12
(
1
), pp.
1
7
. 0952-3480
42.
Quinn
,
T. M.
,
Morel
,
V.
, and
Meister
,
J. J.
, 2001, “
Static Compression of Articular Cartilage Can Reduce Solute Diffusivity and Partitioning: Implications for the Chondrocyte Biological Response
,”
J. Biomech.
0021-9290,
34
(
11
), pp.
1463
1469
.
43.
Luby-Phelps
,
K.
,
Taylor
,
D. L.
, and
Lanni
,
F.
, 1986, “
Probing the Structure of Cytoplasm
,”
J. Cell Biol.
0021-9525,
102
(
6
), pp.
2015
2022
.
44.
Han
,
J.
, and
Herzfeld
,
J.
, 1993, “
Macromolecular Diffusion in Crowded Solutions
,”
Biophys. J.
,
65
(
3
), pp.
1155
1161
. 0006-3495
45.
Lubkin
,
S. R.
, and
Wan
,
X.
, 2006, “
Optimizing Detection of Tissue Anisotropy by Fluorescence Recovery after Photobleaching
,”
Bull. Math. Biol.
0092-8240,
68
(
8
), pp.
1873
1891
.
46.
Lee
,
G. M.
,
Paul
,
T. A.
,
Slabaugh
,
M.
, and
Kelley
,
S. S.
, 2000, “
The Incidence of Enlarged Chondrons in Normal and Osteoarthritic Human Cartilage and Their Relative Matrix Density
,”
Osteoarthritis Cartilage
,
8
(
1
), pp.
44
52
. 1063-4584
47.
Soder
,
S.
,
Hambach
,
L.
,
Lissner
,
R.
,
Kirchner
,
T.
, and
Aigner
,
T.
, 2002, “
Ultrastructural Localization of Type VI Collagen in Normal Adult and Osteoarthritic Human Articular Cartilage
,”
Osteoarthritis Cartilage
,
10
(
6
), pp.
464
470
. 1063-4584
48.
Mauck
,
R. L.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2003, “
Modeling of Neutral Solute Transport in a Dynamically Loaded Porous Permeable Gel: Implications for Articular Cartilage Biosynthesis and Tissue Engineering
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
5
), pp.
602
614
.
49.
O’Hara
,
B. P.
,
Urban
,
J. P.
, and
Maroudas
,
A.
, 1990, “
Influence of Cyclic Loading on the Nutrition of Articular Cartilage
,”
Ann. Rheum. Dis.
,
49
(
7
), pp.
536
539
. 0003-4967
50.
Evans
,
R. C.
, and
Quinn
,
T. M.
, 2006, “
Dynamic Compression Augments Interstitial Transport of a Glucose-Like Solute in Articular Cartilage
,”
Biophys. J.
,
91
(
4
), pp.
1541
1547
. 0006-3495
51.
Evans
,
R. C.
, and
Quinn
,
T. M.
, 2006, “
Solute Convection in Dynamically Compressed Cartilage
,”
J. Biomech.
,
39
(
6
), pp.
1048
1055
. 0021-9290
52.
Ruoslahti
,
E.
, and
Yamaguchi
,
Y.
, 1991, “
Proteoglycans as Modulators of Growth Factor Activities
,”
Cell
,
64
(
5
), pp.
867
869
. 0092-8674
53.
Sandy
,
J. D.
,
O’Neill
,
J. R.
, and
Ratzlaff
,
L. C.
, 1989, “
Acquisition of Hyaluronate-Binding Affinity In Vivo by Newly Synthesized Cartilage Proteoglycans
,”
Biochem. J.
,
258
(
3
), pp.
875
880
. 0264-6021
You do not currently have access to this content.