Most of the myriad (order of 109) interconnected coronary vessels interact nonlinearly with their embedding contracting myocardium. Their dynamic flow can be simulated based on a nonlinear distributive segmental flow model involving highly nonlinear partial differential equations. Such network flow analysis, although of high accuracy, is computationally excessively complex. On the other hand, a corresponding nonlinear lumped analysis is significantly less demanding since it involves ordinary differential equations. This is, however, at the detriment of accuracy. In the present technical report, a nonlinear lumped representation of coronary segmental flow is presented and tested against predictions of the corresponding distributive analysis. The results suggest that under physiological conditions, the proposed lumped model achieves similar accuracy to the distributive one, yet with considerably higher computational speed.

1.
Algranati
,
D.
,
Kassab
,
G. S.
, and
Lanir
,
Y.
, 2007, “
Coronary Flow in Deep Cardiac Layers: A Model Study
,”
Annual Meeting of the Israel Subsection of the International Society for Heart Research—European Section
,
Haifa
, February.
2.
VanBavel
,
E.
, and
Spaan
,
J. A.
, 1992, “
Branching Patterns in the Porcine Coronary Arterial Tree. Estimation of Flow Heterogeneity
,”
Circ. Res.
0009-7330,
71
(
5
), pp.
1200
1212
.
3.
Zamir
,
M.
, 1998, “
Mechanics of Blood Supply to the Heart: Wave Reflection Effects in a Right Coronary Artery
,”
Proc. R. Soc., Ser. B
,
265
(
1394
), pp.
439
444
.
4.
Matthys
,
K. S.
,
Alastruey
,
J.
,
Peiró
,
J.
,
Khir
,
A. W.
,
Segers
,
P.
,
Verdonck
,
P. R.
,
Parker
,
K. H.
, and
Sherwin
,
S. J.
, 2007, “
Pulse Wave Propagation in a Model Human Arterial Network: Assessment of 1-D Numerical Simulations Against In Vitro Measurements
,”
J. Biomech.
0021-9290,
40
(
15
), pp.
3476
3486
.
5.
Huo
,
Y.
, and
Kassab
,
S. G.
, 2006, “
Pulsatile Blood Flow in the Entire Coronary Arterial Tree: Theory and Experiment
,”
Am. J. Phys.
0002-9505,
291
(
3
), pp.
H1074
H1087
.
6.
Downey
,
J. M.
, and
Kirk
,
E. S.
, 1975, “
Inhibition of Coronary Blood Flow by a Vascular Waterfall Mechanism
,”
Circ. Res.
0009-7330,
36
(
6
), pp.
753
760
.
7.
Spaan
,
J. A.
, 1985, “
Coronary Diastolic Pressure-Flow Relation and Zero Flow Pressure Explained on the Basis of Intramyocardial Compliance
,”
Circ. Res.
0009-7330,
56
(
3
), pp.
293
309
.
8.
Kresh
,
J. Y.
,
Fox
,
M.
,
Brockman
,
S. K.
, and
Noordergraaf
,
A.
, 1990, “
Model-Based Analysis of Transmural Vessel Impedance and Myocardial Circulation Dynamics
,”
Am. J. Phys.
0002-9505,
258
(
1
), pp.
H262
H276
.
9.
Manor
,
D.
,
Sideman
,
S.
,
Dinnar
,
U.
, and
Beyar
,
R.
, 1994, “
Analysis of Flow in Coronary Epicardial Arterial Tree and Intramyocardial Circulation
,”
Med. Biol. Eng. Comput.
0140-0118,
32
(
4
) pp.
S133
S143
.
10.
Vis
,
M. A.
,
Sipkema
,
P.
, and
Westerhof
,
N.
, 1997, “
Modeling Pressure-Flow Relations in Cardiac Muscle in Diastole and Systole
,”
Am. J. Phys.
0002-9505,
272
(
3
), pp.
H1516
H1526
.
11.
Smith
,
N. P.
, 2004, “
A Computational Study of the Interaction Between Coronary Blood Flow and Myocardial Mechanics
,”
Physiol. Meas
0967-3334,
25
(
4
), pp.
836
877
.
12.
Fibich
,
G.
,
Lanir
,
Y.
, and
Liron
,
N.
, 1993, “
Mathematical Model of Blood Flow in a Coronary Capillary
,”
Am. J. Phys.
0002-9505,
265
(
5
), pp.
H1829
H1840
.
13.
Kassab
,
G. S.
, and
Molloi
,
S.
, 2001, “
Cross-Sectional Area and Volume Compliance of Porcine Left Coronary Arteries
,”
Am. J. Phys.
0002-9505,
281
(
2
), pp.
H623
H628
.
14.
Lipowsky
,
H. H.
,
Kovalcheck
,
S.
, and
Zweifach
,
B. W.
, 1978, “
The Distribution of Blood Rheological Parameters in the Microcirculation of Cat Mesentery
,”
Circ. Res.
0009-7330,
43
(
5
), pp.
738
749
.
15.
Pries
,
A. R.
,
Secomb
,
T. W.
,
Geßner
,
T.
,
Sperandio
,
M. B.
,
Gross
,
J. F.
, and
Gaehtgens
,
P.
, 1994, “
Resistance to Blood Flow in Microvessels In Vivo
,”
Circ. Res.
0009-7330,
75
(
5
), pp.
904
915
.
16.
Alkoby-Gat
,
M.
, 1995, “
A Mathematical Model of the Blood Flow in Coronary Bifurcations
,” MS Thesis, Technion—Israel Institute of Technology, Haifa, Israel.
17.
Spaan
,
J. A.
,
Bruinsma
,
P.
,
Vergroesen
,
I.
,
Dankelman
,
J.
, and
Stassen
,
H. G.
, 1987, “
Distensibility of Microvasculature and Its Consequences on Coronary Arterial and Venous Flow
,”
Activation, Metabolism and Perfusion of the Heart
,
S.
Sideman
and
R.
Beyar
, eds.,
Nijhoff
,
Dordrecht
, pp.
389
407
.
18.
Mathews
,
J. H.
, 1987,
Numerical Methods for Computer Science, Engineering and Mathematics
,
Prentice-Hall International
,
London
.
19.
Kassab
,
G. S.
,
Rider
,
C. A.
,
Tang
,
N. J.
, and
Fung
,
Y. C.
, 1993, “
Morphometry of Pig Coronary Arterial Trees
,”
Am. J. Phys.
0002-9505,
265
(
1
), pp.
H350
H365
.
20.
Kassab
,
G. S.
,
Lin
,
D. H.
, and
Fung
,
Y. C.
, 1994, “
Morphometry of Pig Coronary Venous System
,”
Am. J. Phys.
0002-9505,
267
(
6
) pp.
H2100
H2113
.
21.
Kassab
,
G. S.
, and
Fung
,
Y. C.
, 1994, “
Topology and Dimensions of Pig Coronary Capillary Network
,”
Am. J. Phys.
0002-9505,
267
(
1
), pp.
H319
H325
.
22.
Nevo
,
E.
, and
Lanir
,
Y.
, 1989, “
Structural Finite Deformation Model of the Left Ventricle During Diastole and Systole
,”
ASME J. Biomech. Eng.
0148-0731,
111
(
4
), pp.
342
349
.
You do not currently have access to this content.