A method has been developed to restore cartilage defects by culturing autologous chondrocytes to create a three dimensional tissue and then implanting the cultured tissue. In this kind of approach, it is important to characterize the dynamic mechanical behavior of the regenerated cartilaginous tissue, because these tissues need to bear various dynamic loadings in daily life. The objectives of this study were to evaluate in detail the dynamic viscoelastic responses of chondrocyte-seeded agarose gel cultures in compression and torsion (shear) and to determine the relationships between these mechanical responses and biochemical composition. The results showed that both the dynamic compressive and shear stiffness of the cultured constructs increased during culture. The relative energy dissipation in dynamic compression decreased, whereas that in dynamic shear increased during culture. Furthermore, correlation analyses showed that the sulfated glycosaminoglycan (sGAG) content of the cultured construct showed significant correlations with the dynamic modulus in both compression and shear situations. On the other hand, the loss tangent in dynamic compression, which represents the relative energy dissipation capability of the constructs, showed a low correlation with the sGAG content, whereas this capability in shear exhibited moderate correlation. In conclusion, we explored the dynamic viscoelasticity of the tissue-engineered cartilage in dynamic compression and shear, and determined correlations between viscoelasticity and biochemical composition.

1.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
. 0148-0731
2.
Mow
,
V. C.
,
Holmes
,
M. H.
, and
Lai
,
W. M.
, 1984, “
Fluid Transport and Mechanical Properties of Articular Cartilage: A Review
,”
J. Biomech.
0021-9290,
17
(
5
), pp.
377
394
.
3.
Hunziker
,
E. B.
, 1999, “
Articular Cartilage Repair: Are the Intrinsic Biological Constraints Undermining This Process Insuperable?
,”
Osteoarthritis Cartilage
,
7
(
1
), pp.
15
28
. 1063-4584
4.
Hunziker
,
E. B.
, 2000, “
Articular Cartilage Repair: Problems and Perspectives
,”
Biorheology
,
37
(
1–2
), pp.
163
164
. 0006-355X
5.
Ma
,
P. X.
,
Schloo
,
B.
,
Mooney
,
D.
, and
Langer
,
R.
, 1995, “
Development of Biomechanical Properties and Morphogenesis of In Vitro Tissue Engineered Cartilage
,”
J. Biomed. Mater. Res.
,
29
(
12
), pp.
1587
1595
. 0021-9304
6.
Chen
,
G.
,
Sato
,
T.
,
Ushida
,
T.
,
Hirochika
,
R.
,
Shirasaki
,
Y.
,
Ochiai
,
N.
, and
Tateishi
,
T.
, 2003, “
The Use of a Novel PLGA Fiber/Collagen Composite Web as a Scaffold for Engineering of Articular Cartilage Tissue With Adjustable Thickness
,”
J. Biomed. Mater. Res.
,
67a
(
4
), pp.
1170
1180
. 1549-3296
7.
Chen
,
G.
,
Sato
,
T.
,
Ushida
,
T.
,
Hirochika
,
R.
, and
Tateishi
,
T.
, 2003, “
Redifferentiation of Dedifferentiated Bovine Chondrocytes When Cultured In Vitro in a PLGA-Collagen Hybrid Mesh
,”
FEBS Lett.
,
542
(
1–3
), pp.
95
99
. 0014-5793
8.
Ushida
,
T.
,
Furukawa
,
K.
,
Toita
,
K.
, and
Tateishi
,
T.
, 2002, “
Three-Dimensional Seeding of Chondrocytes Encapsulated in Collagen Gel Into PLLA Scaffolds
,”
Cell Transplant
,
11
(
5
), pp.
489
494
. 0963-6897
9.
Benya
,
P. D.
, and
Shaffer
,
J. D.
, 1982, “
Dedifferentiated Chondrocytes Reexpress the Differentiated Collagen Phenotype When Cultured in Agarose Gels
,”
Cell
0092-8674,
30
(
1
), pp.
215
224
.
10.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
,
Kimura
,
J. H.
, and
Hunziker
,
E. B.
, 1992, “
Chondrocytes in Agarose Culture Synthesize a Mechanically Functional Extracellular Matrix
,”
J. Orthop. Res.
0736-0266,
10
(
6
), pp.
745
758
.
11.
Mauck
,
R. L.
,
Soltz
,
M. A.
,
Wang
,
C. C.
,
Wong
,
D. D.
,
Chao
,
P. H.
,
Valhmu
,
W. B.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2000, “
Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
3
), pp.
252
260
.
12.
Masuda
,
K.
,
Sah
,
R. L.
,
Hejna
,
M. J.
, and
Thonar
,
E. J.
, 2003, “
A Novel Two-Step Method for the Formation of Tissue-Engineered Cartilage by Mature Bovine Chondrocytes: The Alginate-Recovered-Chondrocyte (ARC) Method
,”
J. Orthop. Res.
0736-0266,
21
(
1
), pp.
139
148
.
13.
Wakitani
,
S.
,
Kimura
,
T.
,
Hirooka
,
A.
,
Ochi
,
T.
,
Yoneda
,
M.
,
Yasui
,
N.
,
Owaki
,
H.
, and
Ono
,
K.
, 1989, “
Repair of Rabbit Articular Surfaces With Allograft Chondrocytes Embedded in Collagen Gel
,”
J. Bone Joint Surg. Br.
,
71
(
1
), pp.
74
80
. 0301-620X
14.
Sawae
,
Y.
,
Shelton
,
J. C.
,
Bader
,
D. L.
, and
Knight
,
M. M.
, 2004, “
Confocal Analysis of Local and Cellular Strains in Chondrocyte-Agarose Constructs Subjected to Mechanical Shear
,”
Ann. Biomed. Eng.
0090-6964,
32
(
6
), pp.
860
870
.
15.
Toyoda
,
T.
,
Seedhom
,
B. B.
,
Yao
,
J. Q.
,
Kirkham
,
J.
,
Brookes
,
S.
, and
Bonass
,
W. A.
, 2003, “
Hydrostatic Pressure Modulates Proteoglycan Metabolism in Chondrocytes Seeded in Agarose
,”
Arthritis Rheum.
,
48
(
10
), pp.
2865
2872
. 0004-3591
16.
Knight
,
M. M.
,
Toyoda
,
T.
,
Lee
,
D. A.
, and
Bader
,
D. L.
, 2006, “
Mechanical Compression and Hydrostatic Pressure Induce Reversible Changes in Actin Cytoskeletal Organisation in Chondrocytes in Agarose
,”
J. Biomech.
,
39
(
8
), pp.
1547
1554
. 0021-9290
17.
Chowdhury
,
T. T.
,
Bader
,
D. L.
, and
Lee
,
D. A.
, 2003, “
Dynamic Compression Counteracts IL-1 Beta-Induced Release of Nitric Oxide and PGE2 by Superficial Zone Chondrocytes Cultured in Agarose Constructs
,”
Osteoarthritis Cartilage
,
11
(
9
), pp.
688
696
. 1063-4584
18.
Mauck
,
R. L.
,
Seyhan
,
S. L.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
, 2002, “
Influence of Seeding Density and Dynamic Deformational Loading on the Developing Structure/Function Relationships of Chondrocyte-Seeded Agarose Hydrogels
,”
Ann. Biomed. Eng.
0090-6964,
30
(
8
), pp.
1046
1056
.
19.
Mauck
,
R. L.
,
Wang
,
C. C.
,
Oswald
,
E. S.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
, 2003, “
The Role of Cell Seeding Density and Nutrient Supply for Articular Cartilage Tissue Engineering With Deformational Loading
,”
Osteoarthritis Cartilage
,
11
, pp.
879
890
. 1063-4584
20.
Miyata
,
S.
,
Furukawa
,
K.
,
Ushida
,
T.
, and
Tateishi
,
T.
, 2004, “
Static and Dynamic Mechanical Properties of Extracellular Matrix Synthesized by Cultured Chondrocytes
,”
Mater. Sci. Eng., C
,
24
, pp.
425
429
. 0928-4931
21.
Lee
,
R. C.
,
Frank
,
E. H.
,
Grodzinsky
,
A. J.
, and
Roylance
,
D. K.
, 1981, “
Oscillatory Compressional Behavior of Articular Cartilage and its Associated Electromechanical Properties
,”
ASME J. Biomech. Eng.
,
103
(
4
), pp.
280
292
. 0148-0731
22.
Huang
,
C. Y.
,
Soltz
,
M. A.
,
Kopacz
,
M.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
, 2003, “
Experimental Verification of the Roles of Intrinsic Matrix Viscoelasticity and Tension–Compression Nonlinearity in the Biphasic Response of Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
1
), pp.
84
93
.
23.
Zhu
,
W.
,
Mow
,
V. C.
,
Koob
,
T. J.
, and
Eyre
,
D. R.
, 1993, “
Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatments
,”
J. Orthop. Res.
0736-0266,
11
(
6
), pp.
771
781
.
24.
Miyata
,
S.
,
Tateishi
,
T.
,
Furukawa
,
K.
, and
Ushida
,
T.
, 2005, “
Influence of Structure and Composition on Dynamic Visco-Elastic Property of Cartilaginous Tissue: Criteria for Classification Between Hyaline Cartilage and Fibrocartilage Based on Mechanical Function
,”
JSME Int. J., Ser. C
1340-8062,
48
(
4
), pp.
547
554
.
25.
Zhu
,
W.
,
Chern
,
K. Y.
, and
Mow
,
V. C.
, 1994, “
Anisotropic Viscoelastic Shear Properties of Bovine Meniscus
,”
Clin. Orthop. Relat. Res.
,
306
, pp.
34
45
. 0009-921X
26.
Rieppo
,
J.
,
Toyras
,
J.
,
Nieminen
,
M. T.
,
Kovanen
,
V.
,
Hyttinen
,
M. M.
,
Korhonen
,
R. K.
,
Jurvelin
,
J. S.
, and
Helminen
,
H. J.
, 2003, “
Structure–Function Relationships in Enzymatically Modified Articular Cartilage
,”
Cells Tissues Organs
1422-6405,
175
(
3
), pp.
121
132
.
You do not currently have access to this content.