To produce a patient-specific finite element (FE) model of a bone such as the pelvis, a complete computer tomographic (CT) or magnetic resonance imaging (MRI) geometric data set is desirable. However, most patient data are limited to a specific region of interest such as the acetabulum. We have overcome this problem by providing a hybrid method that is capable of generating accurate FE models from sparse patient data sets. In this paper, we have validated our technique with mechanical experiments. Three cadaveric embalmed pelves were strain gauged and used in mechanical experiments. FE models were generated from the CT scans of the pelves. Material properties for cancellous bone were obtained from the CT scans and assigned to the FE mesh using a spatially varying field embedded inside the mesh while other materials used in the model were obtained from the literature. Although our FE meshes have large elements, the spatially varying field allowed them to have location dependent inhomogeneous material properties. For each pelvis, five different FE meshes with a varying number of patient CT slices (8–12) were generated to determine how many patient CT slices are needed for good accuracy. All five mesh types showed good agreement between the model and experimental strains. Meshes generated with incomplete data sets showed very similar stress distributions to those obtained from the FE mesh generated with complete data sets. Our modeling approach provides an important step in advancing the application of FE models from the research environment to the clinical setting.

1.
Palastanga
,
N.
,
Field
,
D.
, and
Soames
,
R.
, 2000,
Anatomy and Human Movement: Structure and Function
,
3rd ed.
,
Buttherworth-Heinemann
,
Linacre House, Jordan Hill, Oxford
.
2.
Jacob
,
H. A.
,
Huggler
,
A. H.
,
Dietschi
,
C.
, and
Screiber
,
A.
, 1976, “
Mechanical Function of Subchodral Bone as Experimentally Determined on the Acetabulum of the Human Pelvis
,”
J. Biomech.
0021-9290,
9
, pp.
625
627
.
3.
Brown
,
T. D.
, and
Shaw
,
D. T.
, 1983, “
In Vitro Contact Stress Distributions in the Natural Human Hip
,”
J. Biomech.
0021-9290,
16
, pp.
373
384
.
4.
Greenwald
,
A. S.
, and
O’Connor
,
J. J.
, 1971, “
The Transmission of Load Through the Human Hip Joint
,”
J. Biomech.
0021-9290,
4
, pp.
507
528
.
5.
Sparks
,
D. R.
,
Beason
,
D. P.
,
Etheridge
,
B. S.
,
Alonso
,
J. E.
, and
Eberhardt
,
A. W.
, 2005, “
Contact Pressures in the Flexed Hip Joint During Lateral Trochanteric Loading
,”
J. Orthop. Res.
0736-0266,
23
, pp.
359
366
.
6.
Lionberger
,
D.
,
Walker
,
P.
, and
Granholm
,
J.
, 1985, “
Effects of Prosthetic Acetabular Replacement on Strains in the Pelvis
,”
J. Orthop. Res.
0736-0266,
3
, pp.
372
379
.
7.
Massin
,
P.
,
Vandenbussche
,
E.
,
Landjerit
,
B.
, and
Augereau
,
B.
, 1996, “
Experimental Study of Periacetabular Deformations Before and After Implantation of Hip Prosthesis
,”
J. Biomech.
0021-9290,
29
, pp.
53
61
.
8.
Finlay
,
J.
,
Bourne
,
R.
, and
Andreae
,
P. L. P.
, 1986, “
Pelvic Stresses In Vitro—I. Malsizing of Endoprosthesis
,”
J. Biomech.
0021-9290,
19
, pp.
703
714
.
9.
Finlay
,
J.
,
Bourne
,
R.
, and
Andreae
,
P. L. P.
, 1986, “
Pelvic Stresses In Vitro—LI. A Study of the Efficacy of Metal-Backed Acetabular Prosthese
,”
J. Biomech.
0021-9290,
19
, pp.
715
725
.
10.
Ries
,
M.
,
Pugh
,
J.
,
Au
,
J. C.
,
Gurtowski
,
J.
, and
Dee
,
R.
, 1989, “
Cortical Pelvic Strains With Varying Size Hemiarthroplasty In Vitro
,”
J. Biomech.
0021-9290,
22
, pp.
775
780
.
11.
Curtis
,
M. J.
,
Jinnah
,
R.
,
Wilson
,
V.
, and
Hungerford
,
D.
, 1992, “
The Initial Stability of Uncemented Acetabular Components
,”
J. Bone Joint Surg. Br.
0301-620X,
74
, pp.
372
376
.
12.
Kroeber
,
M.
,
Ries
,
M. D.
,
Suzuki
,
Y.
,
Renowitzky
,
G.
,
Ashford
,
F.
, and
Lotz
,
J.
, 2002, “
Impact Biomechanics and Pelvic Deformation During Insertion of Press-Fit Acetabular Cups
,”
J. Arthroplasty
0883-5403,
17
, pp.
349
354
.
13.
Rapperport
,
D. J.
,
Carter
,
D. R.
, and
Schrman
,
D. J.
, 1985, “
Contact Finite Element Stress Analysis of the Hip Joint
,”
J. Orthop. Res.
0736-0266,
3
, pp.
435
446
.
14.
Brown
,
T. D.
, and
Digioia
,
A. M.
, 1984, “
A Contact Coupled Finite Element Analysis of the Natural Adult Hip
,”
J. Biomech.
0021-9290,
17
, pp.
437
448
.
15.
Rapperport
,
D. J.
,
Carter
,
D. R.
, and
Schurman
,
D. J.
, 1987, “
Contact Finite Element Stress Analysis of Porous Ingrowth Acetabular Cup Implantation, Ingrowth and Loosening
,”
J. Orthop. Res.
0736-0266,
5
, pp.
548
561
.
16.
Carter
,
D. R.
,
Vasu
,
R.
, and
Harris
,
W. H.
, 1982, “
Stress Distributions in the Acetabular Regions—II. Effects of Cement Thickness and Metal Backing of the Total Hip Acetabular Component
,”
J. Biomech.
0021-9290,
15
, pp.
165
170
.
17.
Vasu
,
R.
,
Carter
,
D. R.
, and
Harris
,
W. H.
, 1982, “
Stress Distribution in the Acetabular Region—I. Before and After Total Hip Replacement
,”
J. Biomech.
0021-9290,
15
, pp.
155
164
.
18.
Pederson
,
D.
,
Crowninshield
,
R.
,
Brand
,
R. A.
, and
Johnston
,
R. C.
, 1982, “
An Axisymmetric Model of Acetabular Components in Total Hip Arthroplasty
,”
J. Biomech.
0021-9290,
15
, pp.
305
315
.
19.
Goel
,
V.
,
Valliappan
,
S.
, and
Svensson
,
N.
, 1978, “
Stresses in the Normal Pelvis
,”
Comput. Biol. Med.
0010-4825,
8
, pp.
91
104
.
20.
Dalstra
,
M.
, and
Huiskes
,
R.
, 1995, “
Load Transfer Across the Pelvic Bone
,”
J. Biomech.
0021-9290,
28
, pp.
715
724
.
21.
Oonishi
,
H.
,
Isha
,
H.
, and
Hasegawa
,
T.
, 1983, “
Mechanical Analysis of the Human Pelvis and Its Application to the Artificial Hip Joint—By Means of the Three Dimensional Finite Element Method
,”
J. Biomech.
0021-9290,
16
, pp.
427
444
.
22.
Spears
,
I.
,
Pfleidere
,
M.
,
Schneider
,
E.
,
Hille
,
E.
, and
Morlock
,
M.
, 2001, “
The Effect of Interfacial Parameters on Cup-Bone Relative Micromotions a Finite Element Investigation
,”
J. Biomech.
0021-9290,
34
, pp.
113
120
.
23.
Spears
,
I.
,
Pfleidere
,
M.
,
Schneider
,
E.
,
Hille
,
E.
,
Bergmann
,
G.
, and
Morlock
,
M.
, 2000, “
Interfacial Conditions Between a Press-Fit Acetabular Cup and Bone During Daily Activities: Implications For Achieving Bone In-Growth
,”
J. Biomech.
0021-9290,
33
, pp.
1471
1477
.
24.
Bellini
,
C. M.
,
Galbusera
,
F.
,
Ceroni
,
R. G.
, and
Raimondi
,
M. T.
, 2007, “
Loss in Mechanical Contact of Cementless Acetabular Prosthesis Due to Post-Operative Weight Bearing: A Biomechanical Model
,”
Med. Eng. Phys.
1350-4533,
29
, pp.
175
181
.
25.
Ong
,
K.
,
Lehman
,
J.
,
Notz
,
W.
,
Santner
,
T. J.
, and
Bartel
,
D.
, 2006, “
Acetabular Cup Geometry and Bone-Implant Interference Have More Influence on Initial Perioprosthetic Joint Space Than Joint Loading and Surgical Cup Insertion
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
169
175
.
26.
Anderson
,
A.
,
Peters
,
C.
,
Tuttle
,
B.
, and
Weiss
,
J.
, 2005, “
Subject-Specific Finite Element Models of the Pelvis: Development, Validation and Sensitivity Studies
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
364
373
.
27.
Dalstra
,
M.
,
Huiskes
,
R.
, and
Van Erning
,
L.
, 1995, “
Development and Validation of a Three-Dimensional Finite Element Model of the Pelvic Bone
,”
ASME J. Biomech. Eng.
0148-0731,
117
, pp.
272
278
.
28.
Shim
,
V.
,
Streicher
,
R.
,
Pitto
,
R.
,
Hunter
,
P.
, and
Anderson
,
I.
, 2007, “
The Use of Sparse CT Datasets for Auto-Generating Accurate Finite Element Models of Femur and Pelvis
,”
J. Biomech.
0021-9290,
40
, pp.
26
35
.
29.
Fernandez
,
J.
,
Mithraratne
,
P.
,
Thrupp
,
S.
,
Tawhai
,
M.
, and
Hunter
,
P.
, 2003, “
Anatomically Based Geometric Modeling of the Musculo-Skeletal System and Other Organs
,”
Biomechanics and Modelling in Mechanobiology
,
2
(
3
), pp.
139
155
.
30.
Wriggers
,
P.
, 2002,
Computational Contact Mechanics
,
Wiley
,
West Sussex, England
.
31.
Forster
,
H.
, and
Fisher
,
J.
, 1996, “
The Influence of Loading Time and Lubricant on the Friction of Articular Cartilage
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
210
, pp.
109
119
.
32.
Edidin
,
A. A.
,
Taylor
,
D. L.
, and
Bartel
,
D. L.
, 1991, “
Automatic Assignment of Bone Moduli From CT Data: A 3-D Finite Element Study
,”
Trans. Annu. Meet. - Orthop. Res. Soc.
0149-6433,
16
, p.
491
.
33.
Stevens
,
C.
,
Remme
,
E.
,
Legrice
,
I.
, and
Hunter
,
P.
, 2003, “
Ventricular Mechanics in Diastole: Material Parameter Sensitivity
,”
J. Biomech.
0021-9290,
36
, pp.
737
748
.
34.
Fernandez
,
J.
, and
Hunter
,
P.
, 2005, “An Anatomically Based Patient-Specific Finite Element Model of Patella Articulation: Towards A Diagnostic Tool,” Biomechanics and Modelling in Mechanobiology, 4, pp. 20–38.
35.
Dalstra
,
M.
,
Huiskes
,
R.
,
Odgaard
,
A.
, and
Erning
,
L.
, 1993, “
Mechanical and Textural Properties of Pelvic Trabecular Bone
,”
J. Biomech.
0021-9290,
26
, pp.
523
535
.
36.
Malvern
,
L. E.
, 1969,
Introduction to the Mechanics of a Continuous Medium
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
37.
Viceconti
,
M.
,
Davinelli
,
M.
,
Taddei
,
F.
, and
Cappello
,
A.
, 2004, “
Automatic Generation of Accurate Subject-Specific Bone Finite Element Models to be Used in Clinical Studies
,”
J. Biomech.
0021-9290,
37
(
10
), pp.
1597
1605
.
38.
Taddei
,
F.
,
Cristofolini
,
L.
,
Martelli
,
S.
,
Gill
,
H.
, and
Viceconti
,
M.
, 2006, “
Subject-Specific Finite Element Models of Long Bones: An In Vitro Evaluation of the Overall Accuracy
,”
J. Biomech.
0021-9290,
39
, pp.
2457
2467
.
39.
Taddei
,
F.
,
Schileo
,
E.
,
Helgason
,
B.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
, 2006, “
The Material Mapping Strategy Influences the Accuracy of CT-Based Finite Element Models of Bones: An Evaluation Against Experimental Measurements
,”
Med. Eng. Phys.
1350-4533,
29
, pp.
973
979
.
40.
Wright
,
J. M.
,
Pellicci
,
P. M.
,
Salvati
,
E. A.
,
Ghelman
,
B.
,
Roberts
,
M. M.
, and
Koh
,
J. L.
, 2001, “
Bone Density Adjacent to Press-Fit Acetabular Components: a Prospective Analysis With Quantitative Computed Tomography
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355, Vol.,
83
, pp.
529
536
.
41.
Schmidt
,
R.
,
Muller
,
L.
,
Kress
,
A.
,
Hirschfelder
,
H.
,
Alpas
,
A.
, and
Pitto
,
R.
, 2002, “
A Computed Tomography Assessment of Femoral and Acetabular Bone Changes After Total Hip Arthroplasty
,”
Int. Orthop.
0341-2695,
26
, pp.
299
302
.
42.
Skinner
,
H. B.
,
Kilgus
,
D. J.
,
Keyak
,
J.
,
Shimaoka
,
E. E.
,
Kim
,
A. S.
, and
Tipton
,
J. S.
, 1994, “
Correlation of Computed Finite Element Stresses to Bone Density After Remodeling Around Cementless Femoral Implants
,”
Clin. Orthop. Relat. Res.
0009-921X,
305
, pp.
178
189
.
43.
Lengsfeld
,
M.
,
Burchard
,
R.
,
Cunther
,
D.
,
Pressel
,
T.
,
Schmitt
,
J.
,
Leppek
,
R.
, and
Griss
,
P.
, 2005, “
Femoral Strain Changes After Total Hip Arthroplasty—Patient-Specific Finite Element Analyses 12Years After Operation
,”
Med. Eng. Phys.
1350-4533,
27
, pp.
649
654
.
44.
Hunter
,
P. J.
, and
Borg
,
T. K.
, 2003, “
Integration From Proteins to Organs: The Physiome Project
,”
Nat. Rev. Mol. Cell Biol.
1471-0072,
4
, pp.
237
243
.
45.
Edidin
,
A.
, and
Taylor
,
D.
, 1991, “
Use of Variable Stiffness Elements is Equivalentb of Global Mesh Refinement in a Bone-Alone Proximal Femoral Finite Element Model
,”
Trans. Annu. Meet. - Orthop. Res. Soc.
0149-6433,
16
, p.
309
.
46.
Herrera
,
A.
,
Panisello
,
J.
,
Ibarz
,
E.
,
Cegonino
,
J.
,
Puertolas
,
J.
, and
Garcia
,
L.
, 2007, “
Long-Term Study of Bone Remodelling After Femoral Stem: A Comparison Between Dexa and Finite Element Simulation
,”
J. Biomech.
0021-9290,
40
, pp.
3615
3625
.
47.
Turner
,
A.
,
Gillies
,
R.
,
Sekel
,
R.
,
Morris
,
P.
,
Bruce
,
W.
, and
Walsh
,
W.
, 2005, “
Computational Bone Remodelling Simulations And Comparisons With Dexa Results
,”
J. Orthop. Res.
0736-0266,
23
, pp.
705
712
.
48.
Shim
,
V.
,
Pitto
,
R.
,
Streicher
,
R.
,
Hunter
,
P.
, and
Anderson
,
I.
, 2007, “
Analysis of Stress Transfer Pattern Changes After Uncemented Total Hip Arthroplasty With Patient-Specific Finite Element Models
,”
Transactions of the 53rd Annual Meeting of the Orthopaedic Research Society
,
Orthopaedic Research Society
,
San Diego
, p.
1718
.
49.
Shim
,
V.
,
Pitto
,
R.
,
Streicher
,
R.
, and
Anderson
,
I.
, 2008, “
The Role of Tensile and Compressive Stresses on the BMD Changes After Uncemented THA
,”
Transactions of the 53rd Annual Meeting of The Orthopaedic Research Society
,
Orthopaedic Research Society
,
San Francisco
, p.
1850
.
50.
Munro
,
J.
,
Shim
,
V.
,
Pitto
,
R.
, and
Anderson
,
I.
, 2008, “
Patient Specific 3D Finite Element Modeling of Retro-Acetabular Pathology in Total Hip Arthroplasty
,”
Transactions of the Fifth Clare Valley Bone Meeting
,
Hanson Institute
,
Clare Valley, Australia
, p.
20
.
51.
Shim
,
V.
,
Vaitl
,
P.
,
Boehme
,
J.
, and
Anderson
,
I.
, 2008, “
Accurate Predictions of Fracture Load and Fracture Initiation Location of Acetabular Fractures With Non Linear Finite Element Models
,”
Transactions of the 53rd Annual Meeting of the Orthopaedic Research Society
,
Orthopaedic Research Society
,
San Francisco
, p.
941
.
52.
Evans
,
P.
, 1973,
Mechanical Properties of Bone
,
Springfield
,
IL
.
53.
Currey
,
J. D.
,
Brear
,
K.
,
Zioupos
,
P.
, and
Reilly
,
G. G.
, 1995, “
Effect of Formaldehyde Fixation on Some Mechanical Properties of Bovine Bone
,”
Biomaterials
0142-9612,
16
, pp.
1267
1271
.
54.
McElhaney
,
J. H.
,
Fogle
,
J.
,
Byars
,
E.
, and
Weaver
,
G.
, 1964, “
Effect of Embalming on the Mechanical Properties of Beef Bone
,”
J. Appl. Physiol.
0021-8987,
19
, pp.
1234
1236
.
55.
Ziran
,
B. H.
,
Sharkey
,
N. A.
,
Smith
,
T. S.
,
Wang
,
G.
, and
Chapman
,
M. W.
, 1997, “
Modified Transverse Locking Nail Fixation of Proximal Femoral Fractures
,”
Clin. Orthop. Relat. Res.
0009-921X,
339
, pp.
82
91
.
56.
Edmondston
,
S. J.
,
Singer
,
K. P.
,
Day
,
R. E.
,
Breidahl
,
P. D.
, and
Price
,
R. I.
, 1994, “
Formalin Fixation Effects on Vertebral Bone Density and Failure Mechanics: An In-Vitro Study of Human and Sheep Vertebrae
,”
Clinical Biomechanics
,
9
, pp.
175
179
.
57.
Hibbeler
,
R.
, 1991,
Mechanics of Materials
,
3rd ed.
,
Macmillan
,
New York
.
58.
Bathe
,
K.-J.
, 1996,
Finite Element Procedure
,
Prentice-Hall
,
Upper Saddle River, NJ
.
59.
Taddei
,
F.
,
Pancanti
,
A.
, and
Viceconti
,
M.
, 2004, “
An Improved Method for the Automatic Mapping of Computed Tomography Numbers Onto Finite Element Models
,”
Med. Eng. Phys.
1350-4533,
26
, pp.
61
69
.
60.
Kempson
,
G.
, 1980, “
The Mechanical Properties of Articular Cartilage
,”
The Joint and Synovial Fluid
,
L.
Sokoloff
, ed.,
Academic
,
New York
, Ch. 5, pp.
385
409
.
You do not currently have access to this content.