Particle image velocimetry (PIV) and phase contrast magnetic resonance imaging (PC-MRI) have not been compared in complex biofluid environments. Such analysis is particularly useful to investigate flow structures in the correction of single ventricle congenital heart defects, where fluid dynamic efficiency is essential. A stereolithographic replica of an extracardiac total cavopulmonary connection (TCPC) is studied using PIV and PC-MRI in a steady flow loop. Volumetric two-component PIV is compared to volumetric three-component PC-MRI at various flow conditions. Similar flow structures are observed in both PIV and PC-MRI, where smooth flow dominates the extracardiac TCPC, and superior vena cava flow is preferential to the right pulmonary artery, while inferior vena cava flow is preferential to the left pulmonary artery. Where three-component velocity is available in PC-MRI studies, some helical flow in the extracardiac TCPC is observed. Vessel cross sections provide an effective means of validation for both experiments, and velocity magnitudes are of the same order. The results highlight similarities to validate flow in a complex patient-specific extracardiac TCPC. Additional information obtained by velocity in three components further describes the complexity of the flow in anatomic structures.

1.
Medical References: Birth Defects
,” 2006.
2.
Perinatal Statistics: Leading Categories of Birth Defects
,” 2006.
3.
Heart Disease and Stroke Statistics—2006 Update
,” 2006.
4.
Perinatal Statistics: Economic Costs of Birth Defects
,” 2006.
5.
de Leval
,
M. R.
,
Kilner
,
P.
,
Gewillig
,
M.
, and
Bull
,
C.
, 1988, “
Total Cavopulmonary Connection: A Logical Alternative to Atriopulmonary Connection for Complex Fontan Operations. Experimental Studies and Early Clinical Experience
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
96
(
5
), pp.
682
695
.
6.
Marino
,
B. S.
, 2002, “
Outcomes After the Fontan Procedure
,”
Curr. Opin. Pediatr.
1040-8703,
14
(
5
), pp.
620
662
.
7.
Kirklin
,
J. K.
,
Blackstone
,
E. H.
,
Kirklin
,
J. W.
,
Pacifico
,
A. D.
, and
Bargeron
,
L. M. J.
, 1986, “
The Fontan Operation. Ventricular Hypertrophy, Age, and Date of Operation as Risk Factors
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
92
(
6
), pp.
1049
1064
.
8.
Marcelletti
,
C.
,
Corno
,
A.
,
Giannico
,
S.
, and
Marino
,
B.
, 1990, “
Inferior Vena Cava-Pulmonary Artery Extracardiac Conduit. A New Form of Right Heart Bypass
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
100
(
2
), pp.
228
232
.
9.
Sivasubramanian
,
M.
, 2006, “
Fontan Operation-Pediatric Heart Surgeon Helps you Understand the Fontan Operation
.”
10.
Amodeo
,
A.
,
Grigioni
,
M.
,
Oppido
,
G.
,
Daniele
,
C.
,
D’Avenio
,
G.
,
Pedrizzetti
,
G.
,
Giannico
,
S.
,
Filippelli
,
S.
, and
Di Donato
,
R. M.
, 2002, “
The Beneficial Vortex and Best Spatial Arrangement in Total Extracardiac Cavopulmonary Connection
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
124
(
3
), pp.
471
478
.
11.
Be’eri
,
E.
,
Maier
,
S. E.
,
Landzberg
,
M. J.
,
Chung
,
T.
, and
Geva
,
T.
, 1998, “
In Vivo Evaluation of Fontan Pathway Flow Dynamics by Multidimensional Phase-Velocity Magnetic Resonance Imaging
,”
Circulation
0009-7322,
98
(
25
), pp.
2873
2882
.
12.
Bolzon
,
G.
,
Pedrizzetti
,
G.
,
Grigioni
,
M.
,
Zovatto
,
L.
,
Daniele
,
C.
, and
D’Avenio
,
G.
, 2002, “
Flow on the Symmetry Plane of a Total Cavo-Pulmonary Connection
,”
J. Biomech.
0021-9290,
35
(
5
), pp.
595
608
.
13.
Bove
,
E. L.
,
de Leval
,
M. R.
,
Migliavacca
,
F.
,
Guadagni
,
G.
, and
Dubini
,
G.
, 2003, “
Computational Fluid Dynamics in the Evaluation of Hemodynamic Performance of Cavopulmonary Connections After the Norwood Procedure for Hypoplastic Left Heart Syndrome
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
126
(
4
), pp.
1040
1047
.
14.
de Zélicourt
,
D.
,
Pekkan
,
K.
,
Kitajima
,
H.
,
Frakes
,
D.
, and
Yoganathan
,
A. P.
, 2005, “
Single-Step Stereolithography of Complex Anatomical Models for Optical Flow Measurements
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
1
), pp.
204
207
.
15.
de Zélicourt
,
D. A.
,
Pekkan
,
K.
,
Wills
,
L.
,
Kanter
,
K.
,
Forbess
,
J.
,
Sharma
,
S.
,
Fogel
,
M.
, and
Yoganathan
,
A. P.
, 2005, “
In Vitro Flow Analysis of a Patient-Specific Intraatrial Total Cavopulmonary Connection
,”
Ann. Thorac. Surg.
0003-4975,
79
(
6
), pp.
2094
102
.
16.
DeGroff
,
C. G.
, and
Shandas
,
R.
, 2002, “
Designing the Optimal Total Cavopulmonary Connection: Pulsatile Versus Steady Flow Experiments
,”
Med. Sci. Monit.
,
8
(
3
), pp.
MT41
MT45
.
17.
Dubini
,
G.
,
de Leval
,
M. R.
,
Pietrabissa
,
R.
,
Montevecchi
,
F. M.
, and
Fumero
,
R.
, 1996, “
A Numerical fluid Mechanical Study of Repaired Congenital Heart Defects. Application to the Total Cavopulmonary Connection
,”
J. Biomech.
0021-9290,
29
(
1
), pp.
111
121
. Journal Article.
18.
Ensley
,
A. E.
,
Lynch
,
P.
,
Chatzimavroudis
,
G. P.
,
Lucas
,
C.
,
Sharma
,
S.
, and
Yoganathan
,
A. P.
, 1999, “
Toward Designing the Optimal Total Cavopulmonary Connection: An In Vitro Study
,”
Ann. Thorac. Surg.
0003-4975,
68
(
4
), pp.
1384
1390
.
19.
Gerdes
,
A.
,
Kunze
,
J.
,
Pfister
,
G.
, and
Sievers
,
H. H.
, 1999, “
Addition of a Small Curvature Reduces Power Losses Across Total Cavopulmonary Connections
,”
Ann. Thorac. Surg.
0003-4975,
67
(
6
), pp.
1760
1764
.
20.
Grigioni
,
M.
,
Amodeo
,
A.
,
Daniele
,
C.
,
D’Avenio
,
G.
,
Formigari
,
R.
, and
Di Donato
,
R. M.
, 2000, “
Particle Image Velocimetry Analysis of the Flow Field in the Total Cavopulmonary Connection
,”
Artif. Organs
0160-564X,
24
(
12
), pp.
946
952
.
21.
Healy
,
T. M.
,
Lucas
,
C.
, and
Yoganathan
,
A. P.
, 2001, “
Noninvasive Fluid Dynamic Power Loss Assessments for Total Cavopulmonary Connections Using the Viscous Dissipation Function: A Feasibility Study
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
4
), pp.
317
324
.
22.
Khunatorn
,
Y.
,
Mahalingam
,
S.
,
DeGroff
,
C. G.
, and
Shandas
,
R.
, 2002, “
Influence of Connection Geometry and SVC-IVC Flow Rate Ratio on Flow Structures Within the Total Cavopulmonary Connection: A Numerical Study
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
4
), pp.
364
377
.
23.
Khunatorn
,
Y.
,
Shandas
,
R.
,
DeGroff
,
C.
, and
Mahalingam
,
S.
, 2003, “
Comparison of In Vitro Velocity Measurements in a Scaled Total Cavopulmonary Connection With Computational Predictions
,”
Ann. Biomed. Eng.
0090-6964,
31
(
7
), pp.
810
822
.
24.
Kim
,
Y. H.
,
Walker
,
P. G.
,
Fontaine
,
A. A.
,
Panchal
,
S.
,
Ensley
,
A. E.
,
Oshinski
,
J.
,
Sharma
,
S.
,
Ha
,
B.
,
Lucas
,
C. L.
, and
Yoganathan
,
A. P.
, 1995, “
Hemodynamics of the Fontan Connection: An In Vitro Study
,”
ASME J. Biomech. Eng.
0148-0731,
117
(
4
), pp.
423
428
.
25.
Lardo
,
A. C.
,
del Nido
,
P. J.
,
Webber
,
S. A.
,
Friehs
,
I.
, and
Cape
,
E. G.
, 1997, “
Hemodynamic Effect of Progressive Right Atrial Dilatation in Atriopulmonary Connections
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
114
(
1
), pp.
2
8
.
26.
Lardo
,
A. C.
,
Webber
,
S. A.
,
Friehs
,
I.
,
del Nido
,
P. J.
, and
Cape
,
E. G.
, 1999 “
Fluid Dynamic Comparison of Intra-Atrial and Extracardiac Total Cavopulmonary Connections
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
117
(
4
), pp.
697
704
.
27.
Lardo
,
A. C.
,
Webber
,
S. A.
,
Iyengar
,
A.
,
del Nido
,
P. J.
,
Friehs
,
I.
, and
Cape
,
E. G.
, 1999, “
Bidirectional Superior Cavopulmonary Anastomosis Improves Mechanical Efficiency in Dilated Atriopulmonary Connections
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
118
(
4
), pp.
681
691
.
28.
Low
,
H. T.
,
Chew
,
Y. T.
, and
Lee
,
C. N.
, 1993, “
Flow Studies on Atriopulmonary and Cavopulmonary Connections of the Fontan Operations for Congenital Heart Defects
,”
J. Biomed. Eng.
0141-5425,
15
(
4
), pp.
303
307
.
29.
Masters
,
J. C.
,
Ketner
,
M.
,
Bleiweis
,
M. S.
,
Mill
,
M.
,
Yoganathan
,
A.
, and
Lucas
,
C. L.
, 2004, “
The Effect of Incorporating Vessel Compliance in a Computational Model of Blood Flow in a Total Cavopulmonary Connection (TCPC) With Caval Centerline Offset
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
6
), pp.
709
713
.
30.
Migliavacca
,
F.
,
de Leval
,
M. R.
,
Dubini
,
G.
, and
Pietrabissa
,
R.
, 1996, “
A Computational Pulsatile Model of the Bidirectional Cavopulmonary Anastomosis: The Influence of Pulmonary Forward Flow
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
4
), pp.
520
528
.
31.
Migliavacca
,
F.
,
Dubini
,
G.
,
Bove
,
E. L.
, and
de Leval
,
M. R.
, 2003, “
Computational Fluid Dynamics Simulations in Realistic 3-D Geometries of the Total Cavopulmonary Anastomosis: The Influence of the Inferior Caval Anastomosis
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
6
), pp.
805
813
.
32.
Migliavacca
,
F.
,
Dubini
,
G.
,
Pietrabissa
,
R.
, and
de Leval
,
M. R.
, 1997, “
Computational Transient Simulations With Varying Degree and Shape of Pulmonic Stenosis in Models of the Bidirectional Cavopulmonary Anastomosis
,”
Med. Eng. Phys.
1350-4533,
19
(
4
), pp.
394
403
.
33.
Sharma
,
S.
,
Ensley
,
A. E.
,
Hopkins
,
K.
,
Chatzimavroudis
,
G. P.
,
Healy
,
T. M.
,
Tam
,
V. K.
,
Kanter
,
K. R.
, and
Yoganathan
,
A. P.
, 2001, “
In Vivo Flow Dynamics of the Total Cavopulmonary Connection From Three-Dimensional Multislice Magnetic Resonance Imaging
,”
Ann. Thorac. Surg.
0003-4975,
71
(
3
), pp.
889
898
.
34.
Sharma
,
S.
,
Goudy
,
S.
,
Walker
,
P.
,
Panchal
,
S.
,
Ensley
,
A.
,
Kanter
,
K.
,
Tam
,
V.
,
Fyfe
,
D.
, and
Yoganathan
,
A.
, 1996, “
In Vitro Flow Experiments for Determination of Optimal Geometry of Total Cavopulmonary Connection for Surgical Repair of Children With Functional Single Ventricle
,”
J. Am. Coll. Cardiol.
0735-1097,
27
(
5
), pp.
1264
1269
.
35.
Arun
,
K. S.
,
Huang
,
T. S.
, and
Blostein
,
S. D.
, 1987, “
Least-Squares Fitting of Two 3-D Point Sets
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
9
(
5
), pp.
698
700
.
36.
de Leval
,
M. R.
,
Dubini
,
G.
,
Migliavacca
,
F.
,
Jalali
,
H.
,
Camporini
,
G.
,
Redington
,
A.
, and
Pietrabissa
,
R.
, 1996, “
Use of Computational Fluid Dynamics in the Design of Surgical Procedures: Application to the Study of Competitive Flows in Cavo-Pulmonary Connections
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
111
(
3
), pp.
502
513
.
37.
Ensley
,
A. E.
,
Ramuzat
,
A.
,
Healy
,
T. M.
,
Chatzimavroudis
,
G. P.
,
Lucas
,
C.
,
Sharma
,
S.
,
Pettigrew
,
R.
, and
Yoganathan
,
A. P.
, 2000, “
Fluid Mechanic Assessment of the Total Cavopulmonary Connection Using Magnetic Resonance Phase Velocity Mapping and Digital Particle Image Velocimetry
,”
Ann. Biomed. Eng.
0090-6964,
28
(
10
), pp.
1172
1183
.
38.
Frakes
,
D. H.
,
Conrad
,
C. P.
,
Healy
,
T. M.
,
Monaco
,
J. W.
,
Fogel
,
M.
,
Sharma
,
S.
,
Smith
,
M. J.
, and
Yoganathan
,
A. P.
, 2003, “
Application of an Adaptive Control Grid Interpolation Technique to Morphological Vascular Reconstruction
,”
IEEE Trans. Biomed. Eng.
0018-9294,
50
(
2
), pp.
197
206
.
39.
Migliavacca
,
F.
,
de Leval
,
M. R.
,
Dubini
,
G.
,
Pietrabissa
,
R.
, and
Fumero
,
R.
, 1999, “
Computational Fluid Dynamic Simulations of Cavopulmonary Connections With an Extracardiac Lateral Conduit
,”
Med. Eng. Phys.
1350-4533,
21
(
3
), pp.
187
193
.
40.
Migliavacca
,
F.
,
Dubini
,
G.
,
Pennati
,
G.
,
Pietrabissa
,
R.
,
Fumero
,
R.
,
Hsia
,
T. Y.
, and
de Leval
,
M. R.
, 2000, “
Computational Model of the Fluid Dynamics in Systemic-to-Pulmonary Shunts
,”
J. Biomech.
0021-9290,
33
(
5
), pp.
549
557
.
41.
Migliavacca
,
F.
,
Kilner
,
P. J.
,
Pennati
,
G.
,
Dubini
,
G.
,
Pietrabissa
,
R.
,
Fumero
,
R.
, and
de Leval
,
M. R.
, 1999, “
Computational Fluid Dynamic and Magnetic Resonance Analyses of Flow Distribution Between the Lungs After Total Cavopulmonary Connection
,”
IEEE Trans. Biomed. Eng.
0018-9294,
46
(
4
), pp.
393
399
.
42.
Migliavacca
,
F.
,
Pennati
,
G.
,
Dubini
,
G.
,
Fumero
,
R.
,
Pietrabissa
,
R.
,
Urcelay
,
G.
,
Bove
,
E. L.
,
Hsia
,
T. Y.
, and
de Leval
,
M. R.
, 2001, “
Modeling of the Norwood Circulation: Effects of Shunt Size, Vascular Resistances, and Heart Rate
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
280
(
5
), pp.
H2076
H2086
.
43.
Migliavacca
,
F.
,
Yates
,
R.
,
Pennati
,
G.
,
Dubini
,
G.
,
Fumero
,
R.
, and
de Leval
,
M. R.
, 2000, “
Calculating Blood Flow from Doppler Measurements in the Systemic-to-Pulmonary Artery Shunt After the Norwood Operation: A Method Based on Computational Fluid Dynamics
,”
Ultrasound Med. Biol.
0301-5629,
26
(
2
), pp.
209
219
.
44.
Nogaki
,
M.
,
Senzaki
,
H.
,
Masutani
,
S.
,
Kobayashi
,
J.
,
Kobayashi
,
T.
,
Sasaki
,
N.
,
Asano
,
H.
,
Kyo
,
S.
, and
Yokote
,
Y.
, 2000, “
Ventricular Energetics in Fontan Circulation: Evaluation With a Theoretical Model
,”
Pediatr. Int.
,
42
(
6
), pp.
651
657
.
45.
Pekkan
,
K.
,
de Zélicourt
,
D.
,
Ge
,
L.
,
Sotiropoulos
,
F.
,
Frakes
,
D.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
, 2005, “
Physics-Driven CFD Modeling of Complex Anatomical Cardiovascular Flows–A TCPC Case Study
,”
Ann. Biomed. Eng.
0090-6964,
33
(
3
), pp.
284
300
.
46.
Pennati
,
G.
,
Fiore
,
G. B.
,
Migliavacca
,
F.
,
Lagana
,
K.
,
Fumero
,
R.
, and
Dubini
,
G.
, 2001, “
In Vitro Steady-Flow Analysis of Systemic-to-Pulmonary Shunt Haemodynamics
,”
J. Biomech.
0021-9290,
34
(
1
), pp.
23
30
.
47.
Pennati
,
G.
,
Migliavacca
,
F.
,
Dubini
,
G.
,
Pietrabissa
,
R.
, and
de Leval
,
M. R.
, 1997, “
A Mathematical Model of Circulation in the Presence of the Bidirectional Cavopulmonary Anastomosis in Children With a Univentricular Heart
,”
Med. Eng. Phys.
1350-4533,
19
(
3
), pp.
223
234
.
48.
Pennati
,
G.
,
Migliavacca
,
F.
,
Dubini
,
G.
,
Pietrabissa
,
R.
,
Fumero
,
R.
, and
de Leval
,
M. R.
, 2000, “
Use of Mathematical Model to Predict Hemodynamics in Cavopulmonary Anastomosis With Persistent Forward Flow
,”
J. Surg. Res.
0022-4804,
89
(
1
), pp.
43
52
.
49.
Ryu
,
K.
,
Healy
,
T. M.
,
Ensley
,
A. E.
,
Sharma
,
S.
,
Lucas
,
C.
, and
Yoganathan
,
A. P.
, 2001, “
Importance of Accurate Geometry in the Study of the Total Cavopulmonary Connection: Computational Simulations and In Vitro Experiments
,”
Ann. Biomed. Eng.
0090-6964,
29
(
10
), pp.
844
853
.
50.
Sievers
,
H. H.
,
Gerdes
,
A.
,
Kunze
,
J.
, and
Pfister
,
G.
, 1998, “
Superior Hydrodynamics of a Modified Cavopulmonary Connection for the Norwood Operation
,”
Ann. Thorac. Surg.
0003-4975,
65
(
6
), pp.
1741
1745
.
51.
Van Haesdonck
,
J. M.
,
Mertens
,
L.
,
Sizaire
,
R.
,
Montas
,
G.
,
Purnode
,
B.
,
Daenen
,
W.
,
Crochet
,
M.
, and
Gewillig
,
M.
, 1995, “
Comparison by Computerized Numeric Modeling of Energy Losses in Different Fontan Connections
,”
Circulation
0009-7322,
92
(
9
), pp.
II322
II36
.
52.
Hsia
,
T. Y.
,
Khambadkone
,
S.
,
Redington
,
A. N.
,
Migliavacca
,
F.
,
Deanfield
,
J. E.
, and
de Leval
,
M. R.
, 2000, “
Effects of Respiration and Gravity on Infradiaphragmatic Venous Flow in Normal and Fontan Patients
,”
Circulation
0009-7322,
102
(
19
), pp.
III148
III153
.
53.
Lloyd
,
S. G.
,
Gupta
,
H.
,
Pons-Llado
,
G.
, and
Bayes de Luna
,
A.
, 2006, “
The Effect of Background Velocity Error in the Phase Contrast MRI Measurement of Flow: Propagation-of-Error Theory Applied to Regurgitant Valvular Disease
,” Proceedings of the Society of Cardiovascular Magnetic Resonance, pp.
239
240
.
54.
Hershey
,
B. L.
,
Doyle
,
M.
,
Kortright
,
E.
,
More
,
R.
,
Rayarao
,
G.
, and
Anayiotos
,
A.
, 2005, “
Extension of Rapid Phase-Contrast Magnetic Resonance Imaging Using BRISK in Multidirectional Flow
,”
Ann. Biomed. Eng.
0090-6964,
33
(
7
), pp.
929
936
.
55.
Kortright
,
E.
,
Doyle
,
M.
,
Anayiotos
,
A. S.
,
Walsh
,
E. G.
,
Fuisz
,
A. R.
, and
Pohost
,
G. M.
, 2001, “
Validation of Rapid Velocity Encoded Cine Imaging of a Dynamically Complex Flow Field Using Turbo Block Regional Interpolation Scheme for k Space
,”
Ann. Biomed. Eng.
0090-6964,
29
(
2
), pp.
128
134
.
You do not currently have access to this content.