The influence of time-dependent flows on oxygen transport from hollow fibers was computationally and experimentally investigated. The fluid average pressure drop, a measure of resistance, and the work required by the heart to drive fluid past the hollow fibers were also computationally explored. This study has particular relevance to the development of an artificial lung, which is perfused by blood leaving the right ventricle and in some cases passing through a compliance chamber before entering the device. Computational studies modeled the fiber bundle using cylindrical fiber arrays arranged in in-line and staggered rectangular configurations. The flow leaving the compliance chamber was modeled as dampened pulsatile and consisted of a sinusoidal perturbation superimposed on a steady flow. The right ventricular flow was modeled to depict the period of rapid flow acceleration and then deceleration during systole followed by zero flow during diastole. Experimental studies examined oxygen transfer across a fiber bundle with either steady, dampened pulsatile, or right ventricular flow. It was observed that the dampened pulsatile flow yielded similar oxygen transport efficiency to the steady flow, while the right ventricular flow resulted in smaller oxygen transport efficiency, with the decrease increasing with Re. Both computations and experiments yielded qualitatively similar results. In the computational modeling, the average pressure drop was similar for steady and dampened pulsatile flows and larger for right ventricular flow while the pump work required of the heart was greatest for right ventricular flow followed by dampened pulsatile flow and then steady flow. In conclusion, dampening the artificial lung inlet flow would be expected to maximize oxygen transport, minimize work, and thus improve performance.

1.
Zwischenberger
,
J. B.
,
Anderson
,
C. M.
,
Cook
,
K. E.
,
Lick
,
S. D.
,
Mockros
,
L. F.
, and
Bartlett
,
R. H.
, 2001, “
Development of an Implantable Artificial Lung: Challenges and Progress
,”
ASAIO J.
1058-2916,
47
(
4
), pp.
316
320
.
2.
Zwischenberger
,
J. B.
, and
Alpard
,
S. K.
, 2002, “
Artificial Lungs: A New Inspiration
,”
Perfusion
0267-6591,
17
(
4
), pp.
253
268
.
3.
Zierenberg
,
J. R.
,
Fujioka
,
H.
,
Hirschl
,
R. B.
,
Bartlett
,
R. H.
, and
Grotberg
,
J. B.
, 2007, “
Pulsatile Blood Flow and Oxygen Transport Past a Circular Cylinder
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
2
), pp.
202
215
.
4.
Wickramasinghe
,
S. R.
, and
Han
,
B. B.
, 2002, “
Mass and Momentum Transfer in Commercial Blood Oxygenators
,”
Desalination
0011-9164,
148
(
1–3
), pp.
227
233
.
5.
Wickramasinghe
,
S. R.
,
Goerke
,
A. R.
,
Garcia
,
J. D.
, and
Han
,
B. B.
, 2003, “
Designing Blood Oxygenators
,”
Ann. N.Y. Acad. Sci.
0077-8923,
984
, pp.
502
514
.
6.
Nagase
,
K.
,
Kohori
,
F.
, and
Sakai
,
K.
, 2005, “
Oxygen Transfer Performance of a Membrane Oxygenator Composed of Crossed and Parallel Hollow Fibers
,”
Biochem. Eng. J.
1369-703X,
24
(
2
), pp.
105
113
.
7.
Vaslef
,
S. N.
,
Mockros
,
L. F.
,
Anderson
,
R. W.
, and
Leonard
,
R. J.
, 1994, “
Use of a Mathematical Model to Predict Oxygen Transfer Rates in Hollow Fiber Membrane Oxygenators
,”
ASAIO J.
1058-2916,
40
, pp.
990
996
.
8.
Pennati
,
G.
,
Fiore
,
G. B.
,
Inzoli
,
F.
,
Mastrantonio
,
F.
,
Galavotti
,
D.
, and
Fini
,
M.
, 1998, “
Mass Transfer Efficiency of a Commercial Hollow Fibre Oxygenator During Six-Hour in Vitro Perfusion With Steady and With Pulsatile Blood Flow
,”
Int. J. Artif. Organs
0391-3988,
21
(
2
), pp.
97
106
.
9.
Fiore
,
G. B.
,
Pennati
,
G.
,
Inzoli
,
F.
,
Mastrantonio
,
F.
, and
Galavotti
,
D.
, 1998, “
Effects of Blood Flow Pulse Frequency on Mass Transfer Efficiency of a Commercial Hollow Fibre Oxygenator
,”
Int. J. Artif. Organs
0391-3988,
21
(
9
), pp.
535
541
.
10.
Boschetti
,
F.
,
Cook
,
K. E.
,
Perlman
,
C. E.
, and
Mockros
,
L. F.
, 2003, “
Blood Flow Pulsatility Effects Upon Oxygen Transfer in Artificial Lungs
,”
ASAIO J.
1058-2916,
49
(
6
), pp.
678
686
.
11.
Baker
,
D. A.
,
Holte
,
J. E.
, and
Patankar
,
S. V.
, 1991, “
Computationally 2-Dimensional Finite-Difference Model for Hollow-Fiber Blood-Gas Exchange Devices
,”
Med. Biol. Eng. Comput.
0140-0118,
29
(
5
), pp.
482
488
.
12.
Dierickx
,
P. W.
,
de Wachter
,
D. S.
, and
Verdonck
,
P. R.
, 2001, “
Two-Dimensional Finite Element Model for Oxygen Transfer in Cross-Flow Hollow Fiber Membrane Artificial Lungs
,”
Int. J. Artif. Organs
0391-3988,
24
(
9
), pp.
628
635
.
13.
Chan
,
K. Y.
,
Fujioka
,
H.
,
Bartlett
,
R. H.
,
Hirschl
,
R. B.
, and
Grotberg
,
J. B.
, 2006, “
Pulsatile Flow and Mass Transport Over an Array of Cylinders: Gas Transfer in a Cardiac-Driven Artificial Lung
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
1
), pp.
85
96
.
14.
Haft
,
J. W.
,
Alnajjar
,
O.
,
Bull
,
J. L.
,
Bartlett
,
R. H.
, and
Hirschl
,
R. B.
, 2005, “
Effect of Artificial Lung Compliance on Right Ventricular Load
,”
ASAIO J.
1058-2916,
51
(
6
), pp.
769
772
.
15.
Cook
,
K. E.
,
Perlman
,
C. E.
,
Seipelt
,
R.
,
Backer
,
C. L.
,
Mavroudis
,
C.
, and
Mockros
,
L. F.
, 2005, “
Hemodynamic and Gas Transfer Properties of a Compliant Thoracic Artificial Lung
,”
ASAIO J.
1058-2916,
51
(
4
), pp.
404
411
.
16.
Boschetti
,
F.
,
Perlman
,
C. E.
,
Cook
,
K. E.
, and
Mockros
,
L. F.
, 2000, “
Hemodynamic Effects of Attachment Modes and Device Design of a Thoracic Artificial Lung
,”
ASAIO J.
1058-2916,
46
(
1
), pp.
42
48
.
17.
Thompson
,
J. F.
,
Soni
,
B. K.
, and
Weatherill
,
N. P.
, 1999,
Handbook of Grid Generation
,
CRC
,
Boca Raton, FL
.
18.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
(
Series in Computational and Physical Processes in Mechanics and Thermal Sciences
),
W. J. a. S.
Minkowycz
and
E. M.
Sparrow
, eds.,
Hemisphere
,
New York
, p.
197
.
19.
Weast
,
R. D.
, 1981,
CRC Handbook of Chemistry and Physics
,
62nd ed.
,
CRC
,
Boca Raton, FL
, p.
F
-
42
.
20.
Ciuryla
,
T. H.
, 1975, “
Oxygen Diffusion in Human Blood Plasma
,” Ph.D. dissertation, Northwestern University, Chicago, IL.
21.
Vaslef
,
S. N.
, 1990, “
Analysis and Design of an Intravascular Lung Assist Device
,” Ph.D. dissertation, Northwestern University, Chicago, IL.
22.
McGillicuddy
,
J. W.
,
Chambers
,
S. D.
,
Galligan
,
D. T.
,
Hirschl
,
R. B.
,
Bartlett
,
R. H.
, and
Cook
,
K. E.
, 2005, “
In Vitro Fluid Mechanical Effects of Thoracic Artificial Lung Compliance
,”
ASAIO J.
1058-2916,
51
(
6
), pp.
789
794
.
23.
Sato
,
H.
,
McGillicuddy
,
J. W.
,
Griffith
,
G. W.
,
Cosnowski
,
A. M.
,
Chambers
,
S. D.
,
Hirschl
,
R. B.
,
Bartlett
,
R. H.
, and
Cook
,
K. E.
, 2006, “
Effect of Artificial Lung Compliance on In Vivo Pulmonary System Hemodynamics
,”
ASAIO J.
1058-2916,
52
(
3
), pp.
248
256
.
24.
Whitaker
,
S.
, 1973, “
Transport Equations for Multiphase Systems
,”
Chem. Eng. Sci.
0009-2509,
28
(
1
), pp.
139
147
.
25.
Nozad
,
I.
,
Carbonell
,
R. G.
, and
Whitaker
,
S.
, 1985, “
Heat-Conduction in Multiphase Systems. 1. Theory and Experiment for 2-Phase Systems
,”
Chem. Eng. Sci.
0009-2509,
40
(
5
), pp.
843
855
.
26.
Howes
,
F. A.
, and
Whitaker
,
S.
, 1985, “
The Spatial Averaging Theorem Revisited
,”
Chem. Eng. Sci.
0009-2509,
40
(
8
), pp.
1387
1392
.
27.
Edwards
,
D. A.
,
Shapiro
,
M.
,
Baryoseph
,
P.
, and
Shapira
,
M.
, 1990, “
The Influence of Reynolds-Number Upon the Apparent Permeability of Spatially Periodic Arrays of Cylinders
,”
Phys. Fluids A
0899-8213,
2
(
1
), pp.
45
53
.
28.
Ghaddar
,
C. K.
, 1995, “
On the Permeability of Unidirectional Fibrous Media—A Parallel Computational Approach
,”
Phys. Fluids
1070-6631,
7
(
11
), pp.
2563
2586
.
29.
Dierickx
,
P. W. T.
,
De Wachter
,
D.
, and
Verdonck
,
P. R.
, 2000, “
Blood Flow Around Hollow Fibers
,”
Int. J. Artif. Organs
0391-3988,
23
(
9
), pp.
610
617
.
30.
Cook
,
K. E.
,
Makarewicz
,
A. J.
,
Backer
,
C. L.
,
Mockros
,
L. F.
,
Przybylo
,
H. J.
,
Crawford
,
S. E.
,
Hernandez
,
J. M.
,
Leonard
,
R. J.
, and
Mavroudis
,
C.
, 1996, “
Testing of an Intrathoracic Artificial Lung in a Pig Model
,”
ASAIO J.
1058-2916,
42
(
5
), pp.
604
609
.
31.
Haft
,
J. W.
,
Bull
,
J. L.
,
Rose
,
R.
,
Katsra
,
J.
,
Grotberg
,
J. B.
,
Bartlett
,
R. H.
, and
Hirschl
,
R. B.
, 2003, “
Design of an Artificial Lung Compliance Chamber for Pulmonary Replacement
,”
ASAIO J.
1058-2916,
49
(
1
), pp.
35
40
.
32.
Lick
,
S. D.
,
Zwischenberger
,
J. B.
,
Wang
,
D. F.
,
Deyo
,
D. J.
,
Alpard
,
S. K.
, and
Chambers
,
S. D.
, 2001, “
Improved Right Heart Function With a Compliant Inflow Artificial Lung in Series With the Pulmonary Circulation
,”
Ann. Thorac. Surg.
0003-4975,
72
(
3
), pp.
899
904
.
You do not currently have access to this content.