Micropatterning of two different cell types based on surface modification allows spatial control over two distinct cell subpopulations. This study considers a micropatterned coculture system, which has release and absorption parts alternately arranged at the base, and each part has a single cell type. A micropattern unit was defined and within each unit, there are one release part and one absorption part. The cells in the absorption parts consume species, which are secreted by the cells in the release parts. The species concentrations at the micropatterned cell base were computed from a three-dimensional numerical flow model incorporating mass transport. Different combined parameters were developed for the release and absorption parts to make the data collapse in each part. Combination of the collapse data in the release and absorption parts can be used to predict the concentration distribution through the whole channel. The correlated results were applied to predict the critical length ratio of the release and absorption parts for an actual micropatterned system (Bhatia et al., 1999, “Effect of Cell-Cell Interactions in Preservation of Cellular Phenotype: Co-Cultivation of Hepatocytes and Nonparenchymal Cell,” FASEB J. 13, pp. 1883–1900) to avoid species insufficiency based on basic fibroblast growth factor (bFGF). The mass transfer effectiveness was found to be higher with more numbers of micropattern units. The optimal condition for micropatterned coculture bioreactors is achieved by having the product of the length ratio and the reaction ratio equal to 1. This condition was used to optimize the mass transfer in the micropatterned system (Bhatia et al., 1999, “Effect of Cell-Cell Interactions in Preservation of Cellular henotype: Co-Cultivation of Hepatocytes and Nonparenchymal Cell,” FASEB J. 13, pp. 1883–1900) based on bFGF.

1.
Bhatia
,
S. N.
,
Balis
,
U. J.
,
Yarmush
,
M. L.
, and
Toner
,
M.
, 1998, “
Microfabrication of Hepatocyte∕Fibroblast Co-Cultures: Role of Homotypic Cell Interactions
,”
Biotechnol. Prog.
8756-7938,
14
, pp.
378
387
.
2.
Houssaint
,
E.
, 1990, “
Differentiation of the Mouse Hepatic Primordium. I. An Analysis of Tissue Interactions in Hepatocyte Differentiation
,”
Cell Differ
0045-6039,
9
, pp.
269
279
.
3.
Aufderheide
,
E.
,
Chiquet-Ehrismann
,
R.
, and
Ekblom
,
P.
, 1987, “
Epithelial-Mesenchymal Interactions in the Developing Kindey Lead to Expression of Terascin in the Mesenchyme
,”
J. Cell Biol.
0021-9525,
105
, pp.
599
608
.
4.
Fillinger
,
M. F.
,
O’Connor
,
S. E.
,
Wagner
,
R. J.
, and
Cronenvett
,
J. L.
, 1993, “
The Effect of Endothelial Cell Coculture on Smooth Muscle Cell Proliferation
,”
J. Vasc. Surg.
0741-5214,
17
, pp.
1058
1068
.
5.
Guguen-Guillouzo
,
C.
,
Clement
,
B.
,
Baffet
,
G.
,
Beaumont
,
C.
,
Morchel-Chany
,
E.
,
Glaise
,
D.
, and
Guillouzo
,
A.
, 1983, “
Maintenance and Reversibility of Active Albumin Secretion by Adult Rat Hepatocytes Co-Cultured With Another Liver Epithelial Cell Type
,”
Exp. Cell Res.
0014-4827,
143
, pp.
47
54
.
6.
Matsuo
,
R.
,
Ukida
,
M.
,
Nishikawa
,
Y.
,
Omori
,
N.
, and
Tsuji
,
T.
, 1992, “
The Role of Kupffer Cells in Complement in D-Galactosamine∕Lipopolysaccharide-Induced Hepatic Injury of Rats
,”
Acta Med. Okayama
0386-300X,
46
, pp.
345
354
.
7.
Tilles
,
A. W.
,
Baskaran
,
H.
,
Roy
,
P.
,
Yarmush
,
M. L.
, and
Toner
,
M.
, 2001, “
Effects of Oxygenation and Flow on the Viability and Function of Rat Hepatocytes Co-Cultured in a Microchannel Flat-Plate Bioreactor
,”
Biotechnol. Bioeng.
0006-3592,
73
, pp.
379
389
.
8.
Allen
,
J. W.
,
Khetani
,
S. R.
, and
Bhatia
,
S. N.
, 2005, “
In Vitro Zonation and Toxicity in a Hepatocyte Bioreactor
,”
Toxicol. Sci.
1096-6080,
84
, pp.
110
119
.
9.
Zeng
,
Y.
,
Lee
,
T. S.
,
Yu
,
P.
, and
Low
,
H. T.
, 2007, “
Mass Transport in a Microchannel Bioreactor for Co-Culture Application
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
365
373
.
10.
Zeng
,
Y.
,
Lee
,
T. S.
,
Yu
,
P.
, and
Low
,
H. T.
, 2006, “
Mass Transport and Shear Stress in a Microchannel Bioreactor: Numerical Simulation and Dynamic Similarity
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
185
193
.
11.
Bhatia
,
S. N.
,
Yarmush
,
M. L.
, and
Toner
,
M.
, 1997, “
Controlling Cell Interactions by Micropatterning in Co-Cultures: Hepatocytes and 3T3 Fibroblasts
,”
J. Biomed. Mater. Res.
0021-9304,
34
, pp.
189
199
.
12.
Bhatia
,
S. N.
,
Balis
,
U. J.
,
Yarmush
,
M. L.
, and
Toner
,
M.
, 1999, “
Effect of Cell-Cell Interactions in Preservation of Cellular Phenotype: Co-Cultivation of Hepatocytes and Nonparenchymal Cells
,”
FASEB J.
0892-6638,
13
, pp.
1883
1900
.
13.
Falconnet
,
D.
,
Csucs
,
G.
,
Grandin
,
H. M.
, and
Textor
,
M.
, 2006, “
Surface Engineering Approaches to Micropattern Surfaces for Cell-Based Assays
,”
Biomaterials
0142-9612,
27
, pp.
3044
3063
.
14.
Hui
,
E. E.
, and
Bhatia
,
S. N.
, 2007, “
Micromechanical Control of Cell-Cell Interactions
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
3
, pp.
5722
5726
.
15.
El-Ali
,
J.
,
Sorger
,
P. K.
, and
Jensen
,
K. F.
, 2006, “
Cells on Chips
,”
Nature (London)
0028-0836,
442
, pp.
403
411
.
16.
Starbuck
,
C.
, and
Lauffenburger
,
D. A.
, 1992, “
Mathematical Model for the Effects of Epidermal Growth Factor Receptor Trafficking Dynamics on Fibroblast Proliferation Responses
,”
Biotechnol. Prog.
8756-7938,
8
, pp.
132
143
.
17.
Bikfalvi
,
A.
,
Dupuy
,
E.
,
Inyang
,
A. L.
,
Fayein
,
N.
,
Leseche
,
G.
,
Courtois
,
Y.
, and
Tobeilem
,
G.
, 1989, “
Binding, Internalization, and Degradation of Basic Fibroblast Growth Factor in Human Microvascular Endothelial Cells
,”
Exp. Cell Res.
0014-4827,
181
, pp.
75
84
.
18.
Shin
,
J. W.
,
Min
,
M.
,
Larrieu-Lahague
,
F.
,
Canron
,
X.
,
Kunstfeld
,
R.
,
Nguyen
,
L.
,
Henderson
,
J. E.
,
Bikfalvi
,
A.
,
Detmar
,
M.
, and
Hong
,
Y. K.
, 2006, “
Prox1 Promotes Lineage-Specific Expression of Fibroblast Growth Factor (FGF) Receptor-3 in Lymphatic Endothelium: A Role for FGF Signaling in Lymphangiogenesis
,”
Mol. Biol. Cell
1059-1524,
17
, pp.
576
584
.
19.
Filion
,
R.
, and
Popel
,
A. S.
, 2005, “
Intracorponary Administration of FGF-2: A Computational Model of Myocardial Deposition and Retention
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
288
, pp.
H263
H279
.
20.
Moore
,
K. A.
, and
Lemischka
,
I. R.
, 2006, “
Stem Cells and Their Niches
,”
Science
0036-8075,
311
, pp.
1880
1885
.
21.
Lemaigre
,
F.
, and
Zaret
,
K. S.
, 2004, “
Liver Development Update: New Embryo. Models, Cell Lineage Control, and Morphogenesis
,”
Curr. Opin. Genet. Dev.
0959-437X,
14
, pp.
582
590
.
22.
Zigrino
,
P.
,
Loffek
,
S.
, and
Mauch
,
C.
, 2005, “
Tumor-Stroma Interactions: Their Role in the Control of Tumor Cell Invasion
,”
Biochimie
0300-9084,
87
, pp.
321
328
.
23.
Zinchenko
,
Y. S.
,
Schrum
,
L. W.
,
Clemens
,
M.
, and
Coger
,
R. N.
, 2006, “
Hepatocyte and Kupffer Cells Co-Cultured on Micropatterned Surfaces to Optimize Hepatocyte Function
,”
Tissue Eng.
1076-3279,
12
, pp.
751
761
.
24.
Zinchenko
,
Y. S.
,
Culberson
,
C. R.
, and
Coger
,
R. N.
, 2006, “
Contribution of Non-Parenchymal Cells to the Performance of Micropatterned Hepatocytes
,”
Tissue Eng.
1076-3279,
12
, pp.
2241
2251
.
25.
Ledezma
,
G. A.
,
Folch
,
A.
,
Bhatia
,
S. N.
,
Balis
,
U. J.
,
Yarmush
,
M. L.
, and
Toner
,
M.
, 1999, “
Numerical Model of Fluid Flow and Oxygen Transport in a Radial-Flow Microchannel Containing Hepatocytes
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
58
64
.
26.
Roy
,
P.
,
Baskaran
,
H.
,
Tilles
,
A. W.
,
Yarmush
,
M. L.
, and
Toner
,
M.
, 2001, “
Analysis of Oxygen Transport to Hepatocytes in a Flat-Bed Microchannel Bioreactor
,”
Ann. Biomed. Eng.
0090-6964,
29
, pp.
947
955
.
27.
Balis
,
U. J.
,
Behnia
,
K.
,
Dwarakanath
,
B.
,
Bhatia
,
S. N.
,
Sullivan
,
S. J.
,
Yarmush
,
M. L.
, and
Toner
,
M.
, 1999, “
Oxygen Consumption Characteristics of Porcine Hepatocytes
,”
Metab. Eng.
1096-7176,
1
, pp.
49
62
.
28.
Bikfalvi
,
A.
,
Klein
,
S.
,
Pintucci
,
G.
, and
Rifkin
,
D. B.
, 1997, “
Biological Roles of Fibroblast Growth Factor-2
,”
Endocr. Rev.
0163-769X,
18
, pp.
26
45
.
29.
Fannon
,
M.
,
Forsten
,
K. E.
, and
Nugent
,
M. A.
, 2000, “
Potentiation and Inhibition of bFGF Binding by Heparin: A Model for Regulation of Cellular Response
,”
Biochemistry
0006-2960,
39
, pp.
1434
1445
.
30.
Mansbridge
,
J. N.
,
Liu
,
K.
,
Pinney
,
R. E.
,
Patch
,
R.
,
Ratcliffe
,
A.
, and
Naughton
,
G. K.
, 1999, “
Growth Factors Secreted by Fibroblasts: Role in Healing Diabetic Foot Ulcers
,”
Diabetes, Obesity & Metabolism
,
1
, pp.
265
279
.
31.
Bikfalvi
,
A.
,
Dupuy
,
E.
,
Inyang
,
A. L.
,
Fayein
,
N.
,
Leseche
,
G.
,
Courtois
,
Y.
, and
Tobelem
,
G.
, 1989, “
Binding, Internalization, and Degradation of Basic Fibroblast Growth Factor in Human Microvascular Endothelial Cells
,”
Exp. Cell Res.
0014-4827,
181
, pp.
75
84
.
32.
Koller
,
M. R.
,
Bradley
,
M. S.
, and
Palsson
,
B. Ø.
, 1995, “
Growth Factor Consumption and Production in Perfusion Cultures of Human Bone Marrow Correlate With Specific Cell Production
,”
Exp. Hematol.
0301-472X,
23
, pp.
1275
1283
.
33.
Fannon
,
M.
,
Forsten-Williams
,
K.
,
Dowd
,
C. J.
,
Freedman
,
D. A.
,
Folkman
,
J.
, and
Nugent
,
M. A.
, 2003, “
Binding Inhibition of Angiogenic Factors by Heparan Sulfate Proteglycans in Aqueous Humor: Potential Mechanism for Maintenance of an Avascular Environment
,”
FASEB J.
0892-6638,
17
, pp.
902
904
.
34.
Wang
,
H. M.
, and
Smith
,
K. A.
, 1987, “
The Interleukin 2 Receptor
,”
J. Exp. Med.
0022-1007,
166
, pp.
1055
1069
.
35.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
Hemisphere
,
New York
.
You do not currently have access to this content.