Computational model for airflow through the upper airway of a horse was developed. Previous flow models for human airway do not hold true for horses due to significant differences in anatomy and the high Reynolds number of flow in the equine airway. Moreover, models that simulate the entire respiratory cycle and emphasize on pressures inside the airway in relation to various anatomical diseases are lacking. The geometry of the airway was created by reconstructing images obtained from computed tomography scans of a thoroughbred racehorse. Different geometries for inhalation and exhalation were used for the model based on the difference in the nasopharynx size during the two phases of respiration. The Reynolds averaged Navier–Stokes equations were solved for the isothermal flow with the standard k-ϵ model for turbulence. Transient pressure boundary conditions for the entire breathing cycle were obtained from past experimental studies on live horses. The flow equations were solved in a commercial finite volume solver. The flow rates, computed based on the applied pressure conditions, were compared to experimentally measured flow rates for model validation. Detailed analysis of velocity, pressure, and turbulence characteristics of the flow was done. Velocity magnitudes at various slices during inhalation were found to be higher than corresponding velocity magnitudes during exhalation. The front and middle parts of the nasopharynx were found to have minimum intraluminal pressure in the airway during inhalation. During exhalation, the pressures in the soft palate were higher compared to those in the larynx, epiglottis, and nasopharynx. Turbulent kinetic energy was found to be maximum at the entry to the airway and gradually decreased as the flow moved inside the airway. However, turbulent kinetic energy increased in regions of the airway with abrupt change in area. Based on the analysis of pressure distribution at different sections of the airway, it was concluded that the front part of the nasopharynx requires maximum muscular activity to support it during inhalation. During exhalation, the soft palate is susceptible to displacements due to presence of high pressures. These can serve as critical information for diagnosis and treatment planning of diseases known to affect the soft palate and nasopharynx in horses, and can potentially be useful for human beings.

1.
Woakes
,
A. J.
,
Butler
,
P. J.
, and
Snow
,
D. H.
, 1987, “
The Measurement of Respiratory Airflow in Exercising Horses
,”
Equine Exercise Physiology 2: Proceedings of the Second International Conference on Equine Exercise Physiology
,
J. R.
Gillespie
and
N. E.
Robinson
, eds.,
ICEEP
,
Davis, CA
, pp.
194
205
.
2.
Nielan
,
G. J.
,
Rehder
,
R. S.
,
Ducharme
,
N. G.
, and
Hackett
,
R. P.
, 1992, “
Measurement of Tracheal Static Pressure in Exercising Horses
,”
Vet. Surg.
0161-3499,
21
, pp.
423
428
.
3.
Derksen
,
F. J.
,
Stick
,
J. A.
,
Scott
,
E. A.
,
Robinson
,
N. E.
, and
Slocombe
,
R. F.
, 1986, “
Effect of Laryngeal Hemiplegia and Laryngoplasty on Airway Flow Mechanics in Exercising Horses
,”
Am. J. Vet. Res.
0002-9645,
47
, pp.
16
20
.
4.
Elad
,
D.
,
Liebenthal
,
R.
,
Wenig
,
B. L.
, and
Einav
,
S.
, 1993, “
Analysis of Air-Flow Patterns in the Human Nose
,”
Med. Biol. Eng. Comput.
0140-0118,
31
, pp.
585
592
.
5.
Keyhani
,
K.
,
Scherer
,
P. W.
, and
Mozell
,
M. M.
, 1995, “
Numerical Simulation of Airflow in the Human Nasal Cavity
,”
J. Biomech. Eng.
0148-0731,
117
, pp.
429
441
.
6.
Alipour
,
F.
,
Scherer
,
R.
, and
Knowles
,
J.
, 1996, “
Velocity Distributions in Glottal Models
,”
J. Voice
0892-1997,
10
, pp.
50
58
.
7.
Martonen
,
T. B.
,
Quan
,
L.
,
Zhang
,
Z. Q.
, and
Musante
,
C. J.
, 2002, “
Flow Simulation in the Human Upper Respiratory Tract
,”
Cell Biochem. Biophys.
1085-9195,
37
, pp.
27
36
.
8.
Hahn
,
I.
,
Scherer
,
P. W.
, and
Mozell
,
M. M.
, 1993, “
Velocity Profiles Measured for Air-Flow Through a Large-Scale Model of the Human Nasal Cavity
,”
J. Appl. Physiol.
8750-7587,
75
, pp.
2273
2287
.
9.
Renotte
,
C.
,
Bouffioux
,
V.
, and
Wilquem
,
F.
, 2000, “
Numerical 3d Analysis of Oscillatory Flow in the Time-Varying Laryngeal Channel
,”
J. Biomech.
0021-9290,
33
, pp.
1637
1644
.
10.
Pope
,
S. B.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
11.
Allen
,
G. M.
,
Shortall
,
B. P.
,
Gemci
,
T.
,
Corcoran
,
T. E.
, and
Chigier
,
N. A.
, 2004, “
Computational Simulations of Airflow in an In Vitro Model of the Pediatric Upper Airways
,”
J. Biomech. Eng.
0148-0731,
126
, pp.
604
613
.
12.
Lindemann
,
J.
,
Keck
,
T.
,
Wiesmiller
,
K.
,
Sander
,
L.
,
Brambs
,
H. J.
,
Rettinger
,
G.
, and
Pless
,
D.
, 2004, “
A Numerical Simulation of Intranasal Air Temperature During Inspiration
,”
Laryngoscope
0023-852X,
114
, pp.
1037
1041
.
13.
Pless
,
D.
,
Keck
,
T.
,
Wiesmiller
,
K.
,
Rettinger
,
G.
,
Aschoff
,
A. J.
,
Fleiter
,
T. R.
, and
Lindemann
,
J.
, 2004, “
Numerical Simulation of Air Temperature and Airflow Patterns in the Human Nose During Expiration
,”
Clin. Otolaryngol.
0307-7772,
29
, pp.
642
647
.
14.
Kleinstreuer
,
C.
, and
Zhang
,
Z.
, 2003, “
Laminar-to-Turbulent Fluid-Particle Flows in a Human Airway Model
,”
Int. J. Multiphase Flow
0301-9322,
29
, pp.
271
289
.
15.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
, 2004, “
Airflow Structures and Nano-Particle Deposition in a Human Upper Airway Model
,”
J. Comput. Phys.
0021-9991,
198
, pp.
178
210
.
16.
Lindemann
,
J.
,
Brambs
,
H. J.
,
Keck
,
T.
,
Wiesmiller
,
K. M.
,
Rettinger
,
G.
, and
Pless
,
D.
, 2005, “
Numerical Simulation of Intranasal Airflow After Radical Sinus Surgery
,”
Am. J. Otolaryngol.
0196-0709,
26
, pp.
175
180
.
17.
Alipour
,
F.
, and
Scherer
,
R. C.
, 2004, “
Flow Separation in a Computational Oscillating Vocal Fold Model
,”
J. Acoust. Soc. Am.
0001-4966,
116
, pp.
1710
1719
.
18.
Girardin
,
M.
,
Bilgen
,
E.
, and
Arbour
,
P.
, 1983, “
Experimental-Study of Velocity-Fields in a Human Nasal Fossa by Laser Anemometry
,”
Ann. Otol. Rhinol. Laryngol.
0003-4894,
92
, pp.
231
236
.
19.
Art
,
T.
, and
Lekeux
,
P.
, 1989, “
Work of Breathing in Exercising Ponies
,”
Res. Vet. Sci.
0034-5288,
46
, pp.
49
53
.
20.
Guyton
,
A. C.
, and
Hall
,
J. F.
, 1996,
Textbook of Medical Physiology
,
Saunders
,
Philadelphia, PA
.
21.
Savard
,
P.
,
Cole
,
P.
,
Miljeteig
,
H.
, and
Haight
,
J. S. J.
, 1993, “
Laryngeal Resistance to Respiratory Air-Flow in Humans
,”
Laryngoscope
0023-852X,
103
, pp.
785
792
.
22.
Auer
,
J. A.
, and
Stick
,
J. A.
, 2006,
Equine Surgery
, 3rd ed.,
Saunders Elsevier
,
St. Louis, MO
.
23.
Cole
,
P.
, 1992,
The Respiratory Role of the Upper Airways
,
Mosby Year Book
,
St. Louis, MO
.
24.
Tetens
,
J.
,
Derksen
,
F. J.
,
Stick
,
J. A.
,
Lloyd
,
J. W.
, and
Robinson
,
N. E.
, 1996, “
Efficacy of Prosthetic Laryngoplasty With and Without Bilateral Ventriculocordectomy as Treatments for Laryngeal Hemiplegia in Horses
,”
Am. J. Vet. Res.
0002-9645,
57
, pp.
1668
1673
.
25.
Musante
,
C. J.
, and
Martonen
,
T. B.
, 2000, “
Computer Simulations of Particle Deposition in the Developing Human Lung
,”
J. Air Waste Manage. Assoc.
1096-2247,
50
, pp.
1426
1432
.
26.
Corcoran
,
T. E.
, and
Chigier
,
N.
, 2000, “
Characterization of the Laryngeal Jet Using Phase Doppler Interferometry
,”
J. Aerosol Med.
,
13
(
2
), pp.
125
137
.
27.
Getty
,
R.
, 1975,
The Anatomy of the Domestic Animals
, 5th ed.,
Saunders Co.
,
Philadelphia, PA
.
28.
Radcliffe
,
C. H.
,
Woodie
,
J. B.
,
Hackett
,
R. P.
,
Ainsworth
,
D. M.
,
Erb
,
H. N.
,
Mitchell
,
L. M.
,
Soderholm
,
L. V.
, and
Ducharme
,
N. G.
, 2006, “
A Comparison of Laryngoplasty and Modified Partial Arytenoidectomy as Treatments for Laryngeal Hemiplegia in Exercising Horses
,”
Vet. Surg.
0161-3499,
35
, pp.
643
652
.
29.
Xu
,
C.
,
Sin
,
S. H.
,
McDonough
,
J. M.
,
Udupa
,
J. K.
,
Guez
,
A.
,
Arens
,
R.
, and
Wootton
,
D. M.
, 2006, “
Computational Fluid Dynamics Modeling of the Upper Airway of Children With Obstructive Sleep Apnea Syndrome in Steady Flow
,”
J. Biomech.
0021-9290,
39
, pp.
2043
2054
.
30.
Haynes
,
P. F.
, 1983, “
Dorsal Displacement of the Soft Palate and Epiglottic Entrapment—Diagnosis, Management, and Interrelationship
,”
Comp. Cont. Educ. Pract. Vet
,
5
(
7
), pp.
S379
S388
.
31.
Davidson
,
T. M.
, 2003, “
The Great Leap Forward: The Anatomic Basis for the Acquisition of Speech and Obstructive Sleep Apnea
,”
Sleep Med.
,
4
(
3
), pp.
185
194
.
32.
Sforza
,
E.
,
Krieger
,
J.
, and
Petiau
,
C.
, 1998, “
Nocturnal Evolution of Respiratory Effort in Obstructive Sleep Apnoea Syndrome: Influence on Arousal Threshold
,”
Eur. Respir. J.
0903-1936,
12
, pp.
1257
1263
.
33.
Wang
,
W.
,
Verin
,
E.
, and
Series
,
F.
, 2006, “
Influences of the Breathing Route on Upper Airway Dynamics Properties in Normal Awake Subjects With Constant Mouth Opening
,”
Clin. Sci.
0323-5084,
111
, pp.
349
355
.
34.
Younes
,
M.
,
Sanii
,
R.
,
Patrick
,
W.
,
Marantz
,
S.
, and
Webster
,
K.
, 1994, “
An Approach to the Study of Upper Airway Function in Humans
,”
J. Appl. Physiol.
8750-7587,
77
, pp.
1383
1392
.
35.
Schwartz
,
A. R.
,
Smith
,
P. L.
,
Wise
,
R. A.
,
Gold
,
A. R.
, and
Permutt
,
S.
, 1988, “
Induction of Upper Airway Occlusion in Sleeping Individuals With Subatmospheric Nasal Pressure
,”
J. Appl. Physiol.
8750-7587,
64
, pp.
535
542
.
36.
Kairaitis
,
K.
,
Byth
,
K.
,
Parikh
,
R.
,
Stavrinou
,
R.
,
Wheatley
,
J. R.
, and
Amis
,
T. C.
, 2007, “
Tracheal Traction Effects on Upper Airway Patency in Rabbits: The Role of Tissue Pressure
,”
Sleep
0161-8105,
30
, pp.
179
186
.
37.
Gehr
,
P.
,
Hof
,
V. I.
,
Geiser
,
M.
, and
Schurch
,
S.
, 1991, “
The Fate of Particles Deposited in the Intrapulmonary Conducting Airways
,”
J. Aerosol Med.
,
4
(
4
), pp.
349
361
.
38.
McKenzie
,
H. C.
, 2003, “
Characterization of Antimicrobial Aerosols for Administration to Horses
,”
Vet. Ther.
,
4
(
2
), pp.
110
119
.
39.
Martonen
,
T. B.
,
Zhang
,
Z.
,
Yue
,
G.
, and
Musante
,
C. J.
, 2002, “
3-D Particle Transport Within the Human Upper Respiratory Tract
,”
J. Aerosol Sci.
0021-8502,
33
, pp.
1095
1110
.
40.
Wheeler
,
E. F.
,
Diehl
,
N. K.
,
Zajaczkowski
,
J. L.
, and
Brown
,
D.
, 2006, “
Particulate Matter Characterization in Equestrian Riding Arenas
,”
Trans. ASABE
0001-2351,
49
, pp.
1529
1538
.
41.
Davis
,
M. S.
, and
Foster
,
W. M.
, 2001, “
Airflow and Device Effects on Aerosol Delivery for Large Animals
,”
J. Vet. Pharmacol. Ther.
0140-7783,
24
, pp.
57
60
.
42.
Kidd
,
J. A.
, and
Slone
,
D. E.
, 2002, “
Treatment of Laryngeal Hemiplegia in Horses by Prosthetic Laryngoplasty, Ventriculectomy and Vocal Cordectomy
,”
Vet. Rec.
0042-4900,
150
, pp.
481
484
.
43.
Huang
,
Y. Q.
,
Malhotra
,
A.
, and
White
,
D. P.
, 2005, “
Computational Simulation of Human Upper Airway Collapse Using a Pressure-/State-Dependent Model of Genioglossal Muscle Contraction Under Laminar Flow Conditions
,”
J. Appl. Physiol.
8750-7587,
99
, pp.
1138
1148
.
You do not currently have access to this content.