Since humans can walk with an infinite variety of postures and limb movements, there is no unique solution to the modeling problem to predict human gait motions. Accordingly, we test herein the hypothesis that the redundancy of human walking mechanisms makes solving for human joint profiles and force time histories an indeterminate problem best solved by inverse dynamics and optimization methods. A new optimization-based human-modeling framework is thus described for predicting three-dimensional human gait motions on level and inclined planes. The basic unknowns in the framework are the joint motion time histories of a 25-degree-of-freedom human model and its six global degrees of freedom. The joint motion histories are calculated by minimizing an objective function such as deviation of the trunk from upright posture that relates to the human model’s performance. A variety of important constraints are imposed on the optimization problem, including (1) satisfaction of dynamic equilibrium equations by requiring the model’s zero moment point (ZMP) to lie within the instantaneous geometrical base of support, (2) foot collision avoidance, (3) limits on ground-foot friction, and (4) vanishing yawing moment. Analytical forms of objective and constraint functions are presented and discussed for the proposed human-modeling framework in which the resulting optimization problems are solved using gradient-based mathematical programing techniques. When the framework is applied to the modeling of bipedal locomotion on level and inclined planes, acyclic human walking motions that are smooth and realistic as opposed to less natural robotic motions are obtained. The aspects of the modeling framework requiring further investigation and refinement, as well as potential applications of the framework in biomechanics, are discussed.

1.
Saunders
,
J. B.
,
Inman
,
V. T.
, and
Eberhart
,
H. D.
, 1953, “
The Major Determinants in Normal and Pathological Gait
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
35-A
, pp.
543
558
.
2.
Perry
,
J.
, 1992,
Gait Analysis: Normal and Pathological Function
,
Slack
,
Thorofare, N.J.
.
3.
Sutherland
,
D.
, 1988,
Development of Mature Walking
,
MacKeith
,
Philadelphia
.
4.
Sutherland
,
D. H.
,
Kaufman
,
K. R.
, and
Moitoza
,
J. R.
, 1994, “
Kinematics of Normal Human Walking
,”
Human Walking
,
2nd ed.
,
J.
Rose
and
J. G.
Gamble
, eds.,
Williams and Wilkins
,
Baltimore
, Vol.
2
, pp.
23
45
.
5.
Skinner
,
H. B.
, 2003,
Current Diagnosis and Treatment in Orthopedics
,
3rd ed.
,
McGraw-Hill
,
New York
.
6.
Furusho
,
J.
, and
Masubuchi
,
M.
, 1986, “
Control of a Dynamical Biped Locomotion System for Steady Walking
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
108
, pp.
111
118
.
7.
Faraway
,
J. J.
,
Zhang
,
X.
, and
Chaffin
,
D. B.
, 1999, “
Rectifying Postures Reconstructed From Joint Angles to Meet Constraints
,”
J. Biomech.
0021-9290,
32
(
7
), pp.
733
736
.
8.
Azevedo
,
C.
,
Poignet
,
P.
, and
Espiau
,
B.
, 2002, “
Moving Horizon Control for Biped Robots Without Reference Trajectory
,”
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
,
Washington, D.C.
, pp.
2762
2767
.
9.
Nishiwaki
,
K.
, and
Kagami
,
S.
, 2002, “
Online Generation of Humanoid Walking Motion Based on a Fast Generation Method of Motion Pattern That Follows Desired ZMP
,”
IEEE International Conference on Intelligent Robots and Systems
, Vol.
3
, pp.
2684
2689
.
10.
Kuffner
,
J.
,
James
,
J.
,
Kagami
,
S.
,
Nishiwaki
,
K.
,
Inaba
,
M.
, and
Inoe
,
H.
, 2002, “
Dynamically-Stable Motion Prediction for Humanoid Robots
,”
Auton. Rob.
0929-5593,
12
, pp.
105
118
.
11.
Chevallereau
,
C.
, and
Aousin
,
Y.
, 2001, “
Optimal Reference Trajectories for Walking and Running of a Biped Robot
,”
Robotica
0263-5747,
19
, pp.
557
569
.
12.
Saidouni
,
T.
, and
Bessonnet
,
G.
, 2003, “
Generating Globally Optimized Sagittal Gait Cycles of a Biped Robot
,”
Robotica
0263-5747,
21
(
2
), pp.
199
210
.
13.
Wang
,
Q.
,
Xiang
,
Y.-J.
,
Kim
,
H.-J.
,
Arora
,
J. S.
, and
Abdel-Malek
,
K.
, 2005, “
Alternative Formulations for Optimization-Based Digital Human Motion Prediction
,”
2005 SAE Digital Human Modeling for Design and Engineering Symposium
,
Iowa City, IA
, Jun. 14–16, Paper No. 2005-01-2691.
14.
Chevallereau
,
C.
,
Formal’sky
,
A.
, and
Perrin
,
B.
, 1998, “
Low Energy Cost Reference Trajectories for a Biped Robot
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Leuven, Belgium
, Vol.
3
, pp.
1398
1403
.
15.
Roussel
,
L.
,
Canudas-de-Wit
,
C.
, and
Gowami
,
A.
, 2001, “
Generation of Energy Optimal Complete Gait Cycles for Biped Robots
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Leuven, Belgium
, Vol.
3
, pp.
2036
2041
.
16.
Anderson
,
F. C.
, and
Pandy
,
M. G.
, 2001, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
5
), pp.
381
390
.
17.
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Hull
,
D. G.
, 1992, “
A Parameter Optimization Approach for the Optimal Control of Large-Scale Musculoskeletal Systems
,”
ASME J. Biomech. Eng.
0148-0731,
114
(
4
), pp.
450
460
.
18.
Wang
,
C. Y. E.
,
Bobrow
,
J. E.
, and
Reinkensmeyer
,
D. J.
, 2001, “
Swinging From the Hip: Use of Dynamic Motion Optimization in the Design of Robotic Gait Rehabilitation
,”
Proceedings of 2001 ICRA
,
IEEE
, Vol.
2
, pp.
1433
1438
.
19.
Bessonnet
,
G.
,
Sardain
,
P.
, and
Chesse
,
S.
, 2002, “
Optimal Motion Synthesis-Dynamic Modeling and Numerical Solving Aspects
,”
Multibody Syst. Dyn.
1384-5640,
8
(
3
), pp.
257
278
.
20.
Lo
,
J.
,
Huang
,
G.
, and
Metaxas
,
D.
, 2002, “
Human Motion Prediction Based on Recursive Dynamics and Optimal Control Techniques
,”
Multibody Syst. Dyn.
1384-5640,
8
, pp.
433
458
.
21.
Yamaguchi
,
G. T.
, and
Zajac
,
F. E.
, 1990, “
Restoring Unassisted Natural Gait to Paraplegics Via Functional Neuromuscular Stimulation: A Computer Simulation Study
.”
IEEE Trans. Biomed. Eng.
0018-9294,
37
, pp.
886
902
.
22.
Pandy
,
M. G.
, 2001, “
Computer Modeling and Simulation of Human Movement
,”
Annu. Rev. Biomed. Eng.
1523-9829,
3
, pp.
245
273
.
23.
Tang
,
Z.
,
Zhou
,
C.
, and
Sun
,
Z.
, 2003, “
Trajectory Planning for Smooth Transition of a Biped Robot
,”
Proceedings of 2003 ICRA
,
IEEE
, Vol.
2
, pp.
2455
2460
.
24.
Goswami
,
A.
, 1999, “
Postural Stability of Biped Robots and the Foot Rotation Indicator Point
,”
Int. J. Robot. Res.
0278-3649,
18
(
6
), pp.
523
533
.
25.
Vukobratović
,
M.
, and
Borovac
,
B.
, 2004, “
Zero-Moment Point: Thirty Five Years of Its Life
,”
International Journal of Humanoid Robotics
,
1
(
1
), pp.
157
173
.
26.
Sardain
,
P.
, and
Bessonnet
,
G.
, 2004, “
Forces Acting on a Biped Robot: Center of Pressure—Zero Moment Point
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
1083-4427,
34
(
5
), pp.
630
637
.
27.
Piegl
,
L.
, and
Tiller
,
W.
, 1997,
The NURBS Book
,
2nd ed.
,
Springer-Verlag
,
New York
.
28.
Denavit
,
J.
, and
Hartenberg
,
R. S.
, 1955, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
0021-8936,
22
, pp.
215
221
.
29.
Featherstone
,
R.
, 1987,
Robot Dynamics Algorithms
,
Kluwer Academic
,
Norwell, MA
.
You do not currently have access to this content.