As part of an ongoing effort to study the continuum mechanics effects associated with cryopreservation, the current report focuses on the prediction of fracture formation in cryoprotective agents. Fractures had been previously observed in 1ml samples of the cryoprotective agent cocktail DP6, contained in a standard 15ml glass vial, and subjected to various cooling rates. These experimental observations were obtained by means of a cryomacroscope, which has been recently presented by the current research team. High and low cooling rates were found to produce very distinct patterns of cracking. The current study seeks to explain the observed patterns on the basis of stresses predicted from finite element analysis, which relies on a simple viscoelastic constitutive model and on estimates of the critical stress for cracking. The current study demonstrates that the stress, which results in instantaneous fracture at low cooling rates, is consistent with the stress to initiate fracture at high cooling rate. This consistency supports the credibility of the proposed constitutive model and analysis, and the unified criterion for fracturing, that is, a critical stress threshold.

1.
Fahy
,
G. M.
,
Saur
,
J.
, and
Williams
,
J. R.
, 1980, “
Physical Problems With the Vitrification of Large Biological Systems
,”
Cryobiology
0011-2240,
27
, pp.
492
510
.
2.
Fahy
,
G. M.
, 1987, “
Biological Effects of Vitrification and Devitrification
,”
The Biophysics of Organ Preservation
,
D. E.
Pegg
and
A. M.
Karow
, Jr.
, eds.,
Plenum
,
New York
, pp.
265
297
.
3.
Kroener
,
C.
, and
Luyet
,
B. J.
, 1966, “
Formation of Cracks During the Vitrification of Glycerol Solutions and Disappearance of the Cracks During Rewarming
,”
Biodynamica
0006-3010,
10
(
201
), pp.
47
52
.
4.
Taylor
,
M. J.
,
Song
,
Y. C.
, and
Brockbank
,
K. G. M.
, 2004, “
Vitrification in Tissue Preservation: New Developments
,”
Life in the Frozen State
,
B. J.
Fuller
,
N.
Lane
, and
E. E.
Benson
, eds.,
CRC
,
New York
, pp
603
641
.
5.
Rabin
,
Y.
,
Steif
,
P. S.
,
Taylor
,
M. J.
,
Walsh
,
J. R.
, and
Baicu
,
S.
, 2005, Cryomacroscopy of Vitrification: Selected Experiments on DP6 and VS55: http://www.me.cmu.edu/faculty1/rabin/CryomacroscopyImages01.htmlhttp://www.me.cmu.edu/faculty1/rabin/CryomacroscopyImages01.html
6.
Rabin
,
Y.
,
Taylor
,
M. J.
,
Walsh
,
J. R.
,
Baicu
,
S.
, and
Steif
,
P. S.
, 2005, “
Cryomacroscopy of Vitrification, Part I: A Prototype and Experimental Observations on the Cocktails VS55 and DP6
,”
Cell Preservation Technology
,
3
(
3
), pp.
169
183
.
7.
Steif
,
P. S.
,
Palastro
,
M.
,
Wen
,
C. R.
,
Baicu
,
S.
,
Taylor
,
M. J.
, and
Rabin
,
Y.
, 2005, “
Cryomacroscopy of Vitrification, Part II: Experimental Observations and Analysis of Fracture Formation in Vitrified VS55 and DP6
,”
Cell Preservation Technology
,
3
(
3
), pp.
184
200
.
8.
Pegg
,
D. E.
,
Wusteman
,
M. C.
, and
Boylan
,
S.
, 1997, “
Fractures in Cryopreserved Elastic Arteries
,”
Cryobiology
0011-2240,
34
(
2
), pp.
183
192
.
9.
Plitz
,
J.
,
Rabin
,
Y.
, and
Walsh
,
J. R.
, 2004, “
The Effect of Thermal Expansion of Ingredients on the Cocktails VS55 and DP6
,”
Cell Preservation Technology
,
2
(
3
), pp.
215
226
.
10.
Rabin
,
Y.
,
Taylor
,
M. J.
, and
Wolmark
,
N.
, 1998, “
Thermal Expansion Measurements of Frozen Biological Tissues at Cryogenic Temperatures
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
2
), pp.
259
266
.
11.
Rabin
,
Y.
, and
Bell
,
E.
, 2003, “
Thermal Expansion Measurements of Cryoprotective Agents, Part I: A New Experimental Apparatus
,”
Cryobiology
0011-2240,
46
, pp.
254
263
.
12.
Rabin
,
Y.
, and
Bell
,
E.
, 2003, “
Thermal Expansion Measurements of Cryoprotective Agents, Part II: Measurements of DP6 and VS55, and Comparison With DMSO
,”
Cryobiology
0011-2240,
46
, pp.
264
270
.
13.
Rabin
,
Y.
, and
Plitz
,
J.
, 2005, “
Thermal Expansion of Blood Vessels and Muscle Specimens Permeated With DMSO, DP6, and VS55 in Cryogenic Temperatures
,”
Ann. Biomed. Eng.
0090-6964,
33
(
9
), pp.
1213
1228
.
14.
Rabin
,
Y.
, and
Steif
,
P. S.
, 2005, “
Analysis of Thermo-Mechanical Stress During Cryopreservation of Blood Vessels
,”
Cryoletters
,
26
(
6
), pp.
409
411
.
15.
Song
,
Y. C.
,
Khirabadi
,
B. S.
,
Lightfoot
,
F. G.
,
Brockbank
,
K. G. M.
, and
Taylor
,
M. J.
, 2000, “
Vitreous Cryopreservation Maintains the Function of Vascular Grafts
,”
Nat. Biotechnol.
1087-0156,
18
, pp.
296
299
.
16.
Karow
,
A. M.
, 1981, “
Biophysical and Chemical Considerations in Cryopreservation
,”
Organ Preservation for Transplantation
,
A. M.
Karow
and
D. E.
Pegg
, eds.,
Dekker
,
New York
, p.
113
.
17.
Luyet
,
B. J.
, 1937, “
The Vitrification of Organic Colloids and of Protoplasm
,”
Biodynamica
0006-3010,
1
(
29
), pp.
1
14
.
18.
Taylor
,
M. J.
, 1984, “
Sub-Zero Preservation and the Prospect of Long-Term Storage of Multicellular Tissues and Organs
,”
Transplantation Immunology: Clinical and Experimental
,
R. Y.
Calne
, ed.,
Oxford University Press
,
Oxford
, pp.
360
390
.
19.
Taylor
,
M. J.
, 1987, “
Physico-Chemical Principles of Low Temperature Biology
,”
B. W. W.
Grout
and
J. G.
Morris
, eds.,
The Effects of Low Temperatures on Biological System
,
Arnold
,
London
, pp.
3
71
.
20.
Rabin
,
Y.
, and
Steif
,
P. S.
, 1999, “
Thermal Stress Modeling of Freezing Biological Tissues
,”
Advances in Heat and Mass Transfer in Biotechnology, IMECE 1999
,
Nashville
,
TN
, ASME HTD-Vol. 363∕BED-Vol.
44
, pp.
183
188
.
21.
Rabin
,
Y.
, and
Steif
,
P. S.
, 2000, “
Thermal Stress Modeling in Cryosurgery
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
2363
2375
.
22.
Rabin
,
Y.
,
Steif
,
P. S.
,
Hess
,
K. C.
,
Jimenez-Rios
,
J. L.
, and
Palastro
,
M. C.
, 2006, “
Fracture Formation in Vitrified Thin Films of Cryoprotectants
,”
Cryobiology
0011-2240,
53
(
1
), pp.
75
95
.
23.
Rabin
,
Y.
,
Steif
,
P. S.
,
Hess
,
K. C.
, and
Jimenez-Rios
,
J. L.
, 2006, “
Cryomacroscopy of Fracture Formation in Vitrified Thin Films of Cryoprotectants
,” http://www.me.cmu.edu/faculty1/rabin/CryomacroscopyImages02.htmlhttp://www.me.cmu.edu/faculty1/rabin/CryomacroscopyImages02.html
24.
Malvern
,
L. E.
, 1969,
Introduction to the Mechanics of a Continuous Medium
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
25.
Rabin
,
Y.
, 2000, “
The Effect of Temperature-Dependent Thermophysical Properties in Heat Transfer Simulations of Biomaterials in Cryogenic Temperatures
,”
CryoLetters
,
21
, pp.
163
170
.
26.
Nieto-Draghi
,
C.
, and
Avalos
,
J. B.
, 2003, “
Transport Properties of Dimethyl Sulfoxide Aqueous Solutions
,”
J. Chem. Phys.
0021-9606,
119
(
9
), pp.
4782
4789
.
27.
Schichman
,
S. A.
, and
Amey
,
R. L.
, 1971, “
Viscosity and Local Liquid Structure in Dimethyl Sulfoxide-Water Mixtures
,”
J. Phys. Chem.
0022-3654,
75
(
1
), pp.
98
102
.
28.
Westh
,
P.
, 1994, “
Thermal Expansivity, Molar Volume, and Heat Capacity of Liquid Dimethyl Sulfoxide-Water Mixtures at Subzero Temperatures
,”
J. Phys. Chem.
0022-3654,
98
(
12
), pp.
3222
3225
.
29.
Richerson
,
D. W.
, 1992,
Modern Ceramic Engineering: Properties, Processing, and Use in Design
,
Dekker
,
New York
.
30.
Ashby
,
M. F.
, and
Jones
,
D. R. H.
, 1980,
Engineering Materials: An Introduction to Their Properties and Applications
,
Pergamon
,
Oxford
.
You do not currently have access to this content.