Mandibular condylar cartilage plays a crucial role in temporomandibular joint (TMJ) function, which includes facilitating articulation with the temporomandibular joint disc and reducing loads on the underlying bone. The cartilage experiences considerable tensile forces due to direct compression and shear. However, only scarce information is available about its tensile properties. The present study aims to quantify the biomechanical characteristics of the mandibular condylar cartilage to aid future three-dimensional finite element modeling and tissue engineering studies. Porcine condylar cartilage was tested under uniaxial tension in two directions, anteroposterior and mediolateral, with three regions per direction. Stress relaxation behavior was modeled using the Kelvin model and a second-order generalized Kelvin model, and collagen fiber orientation was determined by polarized light microscopy. The stress relaxation behavior of the tissue was biexponential in nature. The tissue exhibited greater stiffness in the anteroposterior direction than in the mediolateral direction as reflected by higher Young’s (2.4 times), instantaneous (1.9 times), and relaxed (1.9 times) moduli. No significant differences were observed among the regional properties in either direction. The predominantly anteroposterior macroscopic fiber orientation in the fibrous zone of condylar cartilage correlated well with the biomechanical findings. The condylar cartilage appears to be less stiff and less anisotropic under tension than the anatomically and functionally related TMJ disc. The anisotropy of the condylar cartilage, as evidenced by tensile behavior and collagen fiber orientation, suggests that the shear environment of the TMJ exposes the condylar cartilage to predominantly but not exclusively anteroposterior loading.

1.
Piette
,
E.
, 1993, “
Anatomy of the Human Temporomandibular Joint. An Updated Comprehensive Review
,”
Acta Stomatol. Belg.
0001-7000,
90
(
2
), pp.
103
127
.
2.
Jagger
,
R. G.
,
Bates
,
J. F.
, and
Kopp
,
S.
, 1994,
Temporomandibular Joint Dysfunction: The Essentials
,
Butterworth Heinemann
,
Oxford
.
3.
Carlsson
,
G. E.
, and
LeResche
,
L.
, 1995, “
Epidemiology of Temporomandibular Disorders
,”
Temporomandibular Disorders and Related Pain Conditions
,
B. J.
Sessle
,
P. S.
Bryant
, and
R.
Dionne
, eds.,
IASP Press
,
Seattle
, pp.
211
226
.
4.
Farrar
,
W. B.
, and
McCarty
,
W. L.
, Jr.
, 1979, “
The Tmj Dilemma
,”
J. Ala. Dent. Assoc.
0002-4198,
63
(
1
), pp.
19
26
.
5.
Tanaka
,
E.
,
del Pozo
,
R.
,
Tanaka
,
M.
,
Asai
,
D.
,
Hirose
,
M.
,
Iwabe
,
T.
, and
Tanne
,
K.
, 2004, “
Three-Dimensional Finite Element Analysis of Human Temporomandibular Joint With and Without Disc Displacement During Jaw Opening
,”
Med. Eng. Phys.
1350-4533,
26
(
6
), pp.
503
511
.
6.
Stegenga
,
B.
, 2001, “
Osteoarthritis of the Temporomandibular Joint Organ and Its Relationship to Disc Displacement
,”
J. Orofac. Pain
1064-6655,
15
(
3
), pp.
193
205
.
7.
Tanaka
,
E.
,
Detamore
,
M. S.
, and
Mercuri
,
L. G.
, 2008, “
Degenerative Disorders of the Temporomandibular Joint: Etiology, Diagnosis, and Treatment
,”
J. Dent. Res.
0022-0345, in press.
8.
Herring
,
S. W.
, and
Liu
,
Z. J.
, 2001, “
Loading of the Temporomandibular Joint: Anatomical and In Vivo Evidence From the Bones
,”
Cells Tissues Organs
1422-6405,
169
(
3
), pp.
193
200
.
9.
Marks
,
L.
,
Teng
,
S.
,
Artun
,
J.
, and
Herring
,
S.
, 1997, “
Reaction Strains on the Condylar Neck During Mastication and Maximum Muscle Stimulation in Different Condylar Positions: An Experimental Study in the Miniature Pig
,”
J. Dent. Res.
0022-0345,
76
(
7
), pp.
1412
1420
.
10.
Chen
,
J.
,
Akyuz
,
U.
,
Xu
,
L.
, and
Pidaparti
,
R. M.
, 1998, “
Stress Analysis of the Human Temporomandibular Joint
,”
Med. Eng. Phys.
1350-4533,
20
(
8
), pp.
565
572
.
11.
de Bont
,
L. G.
,
Boering
,
G.
,
Havinga
,
P.
, and
Liem
,
R. S.
, 1984, “
Spatial Arrangement of Collagen Fibrils in the Articular Cartilage of the Mandibular Condyle: A Light Microscopic and Scanning Electron Microscopic Study
,”
J. Oral Maxillofac Surg.
0278-2391,
42
(
5
), pp.
306
313
.
12.
Klinge
,
R. F.
, 1996, “
The Structure of the Mandibular Condyle in the Monkey (Macaca Mulatta)
,”
Micron
0968-4328,
27
(
5
), pp.
381
387
.
13.
Milam
,
S. B.
,
Klebe
,
R. J.
,
Triplett
,
R. G.
, and
Herbert
,
D.
, 1991, “
Characterization of the Extracellular Matrix of the Primate Temporomandibular Joint
,”
J. Oral Maxillofac Surg.
0278-2391,
49
(
4
), pp.
381
391
.
14.
Mizoguchi
,
I.
,
Takahashi
,
I.
,
Nakamura
,
M.
,
Sasano
,
Y.
,
Sato
,
S.
,
Kagayama
,
M.
, and
Mitani
,
H.
, 1996, “
An Immunohistochemical Study of Regional Differences in the Distribution of Type I and Type II Collagens in Rat Mandibular Condylar Cartilage
,”
Arch. Oral Biol.
0003-9969,
41
(
8–9
), pp.
863
869
.
15.
Shibata
,
S.
,
Baba
,
O.
,
Ohsako
,
M.
,
Suzuki
,
S.
,
Yamashita
,
Y.
, and
Ichijo
,
T.
, 1991, “
Ultrastructural Observation on Matrix Fibers in the Condylar Cartilage of the Adult Rat Mandible
,”
Bull. Tokyo Med. Dent. Univ.
0040-8921,
38
(
4
), pp.
53
61
.
16.
Tanaka
,
E.
,
Yamano
,
E.
,
Dalla-Bona
,
D. A.
,
Watanabe
,
M.
,
Inubushi
,
T.
,
Shirakura
,
M.
,
Sano
,
R.
,
Takahashi
,
K.
,
van Eijden
,
T.
, and
Tanne
,
K.
, 2006, “
Dynamic Compressive Properties of the Mandibular Condylar Cartilage
,”
J. Dent. Res.
0022-0345,
85
(
6
), pp.
571
575
.
17.
Hu
,
K.
,
Radhakrishnan
,
P.
,
Patel
,
R. V.
, and
Mao
,
J. J.
, 2001, “
Regional Structural and Viscoelastic Properties of Fibrocartilage Upon Dynamic Nanoindentation of the Articular Condyle
,”
J. Struct. Biol.
1047-8477,
136
(
1
), pp.
46
52
.
18.
Patel
,
R. V.
, and
Mao
,
J. J.
, 2003, “
Microstructural and Elastic Properties of the Extracellular Matrices of the Superficial Zone of Neonatal Articular Cartilage by Atomic Force Microscopy
,”
Front. Biosci.
1093-4715,
8
, pp.
a18
a25
.
19.
Kuboki
,
T.
,
Shinoda
,
M.
,
Orsini
,
M. G.
, and
Yamashita
,
A.
, 1997, “
Viscoelastic Properties of the Pig Temporomandibular Joint Articular Soft Tissues of the Condyle and Disc
,”
J. Dent. Res.
0022-0345,
76
(
11
), pp.
1760
1769
.
20.
Kang
,
H.
,
Bao
,
G.
,
Dong
,
Y.
,
Yi
,
X.
,
Chao
,
Y.
, and
Chen
,
M.
, 2000, “
Tensile Mechanics of Mandibular Condylar Cartilage
,”
West China Journal of Stomatology
,
18
(
2
), pp.
85
87
.
21.
Teng
,
S.
,
Xu
,
Y.
,
Cheng
,
M.
, and
Li
,
Y.
, 1991, “
Biomechanical Properties and Collagen Fiber Orientation of Temporomandibular Joint Discs in Dogs: 2. Tensile Mechanical Properties of the Discs
,”
J. Dent. Handicap
0163-8629,
5
(
2
), pp.
107
114
.
22.
Tanaka
,
E.
,
Sasaki
,
A.
,
Tahmina
,
K.
,
Yamaguchi
,
K.
,
Mori
,
Y.
, and
Tanne
,
K.
, 2001, “
Mechanical Properties of Human Articular Disk and Its Influence on TMJ Loading Studied With the Finite Element Method
,”
J. Oral Rehabil.
0305-182X,
28
(
3
), pp.
273
279
.
23.
Tanne
,
K.
,
Tanaka
,
E.
, and
Sakuda
,
M.
, 1991, “
The Elastic Modulus of the Temporomandibular Joint Disc From Adult Dogs
,”
J. Dent. Res.
0022-0345,
70
(
12
), pp.
1545
1548
.
24.
Detamore
,
M. S.
, and
Athanasiou
,
K. A.
, 2003, “
Tensile Properties of the Porcine Temporomandibular Joint Disc
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
4
), pp.
558
565
.
25.
Bermejo
,
A.
,
Gonzalez
,
O.
, and
Gonzalez
,
J. M.
, 1993, “
The Pig as an Animal Model for Experimentation on the Temporomandibular Articular Complex
,”
Oral Surg., Oral Med., Oral Pathol.
0030-4220,
75
(
1
), pp.
18
23
.
26.
Strom
,
D.
,
Holm
,
S.
,
Clemensson
,
E.
,
Haraldson
,
T.
, and
Carlsson
,
G. E.
, 1986, “
Gross Anatomy of the Mandibular Joint and Masticatory Muscles in the Domestic Pig (Sus Scrofa)
,”
Arch. Oral Biol.
0003-9969,
31
(
11
), pp.
763
768
.
27.
Sun
,
Z.
,
Liu
,
Z. J.
, and
Herring
,
S. W.
, 2002, “
Movement of Temporomandibular Joint Tissues During Mastication and Passive Manipulation in Miniature Pigs
,”
Arch. Oral Biol.
0003-9969,
47
(
4
), pp.
293
305
.
28.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
,
Howell
,
D. S.
, and
Manicourt
,
D. H.
, 1986, “
Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
0736-0266,
4
(
4
), pp.
379
392
.
29.
Setton
,
L. A.
,
Mow
,
V. C.
,
Muller
,
F. J.
,
Pita
,
J. C.
, and
Howell
,
D. S.
, 1997, “
Mechanical Behavior and Biochemical Composition of Canine Knee Cartilage Following Periods of Joint Disuse and Disuse With Remobilization
,”
Osteoarthritis Cartilage
1063-4584,
5
(
1
), pp.
1
16
.
30.
Elliott
,
D. M.
,
Guilak
,
F.
,
Vail
,
T. P.
,
Wang
,
J. Y.
, and
Setton
,
L. A.
, 1999, “
Tensile Properties of Articular Cartilage are Altered by Meniscectomy in a Canine Model of Osteoarthritis
,”
J. Orthop. Res.
0736-0266,
17
(
4
), pp.
503
508
.
31.
Charlebois
,
M.
,
McKee
,
M. D.
, and
Buschmann
,
M. D.
, 2004, “
Nonlinear Tensile Properties of Bovine Articular Cartilage and Their Variation With Age and Depth
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
129
137
.
32.
Swann
,
A. C.
, and
Seedhom
,
B. B.
, 1989, “
Improved Techniques for Measuring the Indentation and Thickness of Articular Cartilage
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
203
(
3
), pp.
143
150
.
33.
Elliott
,
D. M.
, and
Setton
,
L. A.
, 2001, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus: Experimental Measurement and Material Model Predictions
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
3
), pp.
256
263
.
34.
Ferguson
,
S. J.
,
Bryant
,
J. T.
, and
Ito
,
K.
, 2001, “
The Material Properties of the Bovine Acetabular Labrum
,”
J. Orthop. Res.
0736-0266,
19
(
5
), pp.
887
896
.
35.
Woo
,
S. L.
,
Lubock
,
P.
,
Gomez
,
M. A.
,
Jemmott
,
G. F.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
, 1979, “
Large Deformation Nonhomogeneous and Directional Properties of Articular Cartilage in Uniaxial Tension
,”
J. Biomech.
0021-9290,
12
(
6
), pp.
437
446
.
36.
Park
,
S.
, and
Ateshian
,
G. A.
, 2006, “
Dynamic Response of Immature Bovine Articular Cartilage in Tension and Compression, and Nonlinear Viscoelastic Modeling of the Tensile Response
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
4
), pp.
623
630
.
37.
Parsons
,
J. R.
, and
Black
,
J.
, 1979, “
Mechanical Behavior of Articular Cartilage: Quantitative Changes With Alteration of Ionic Environment
,”
J. Biomech.
0021-9290,
12
(
10
), pp.
765
773
.
38.
Grodzinsky
,
A. J.
,
Roth
,
V.
,
Myers
,
E.
,
Grossman
,
W. D.
, and
Mow
,
V. C.
, 1981, “
The Significance of Electromechanical and Osmotic Forces in the Nonequilibrium Swelling Behavior of Articular Cartilage in Tension
,”
ASME J. Biomech. Eng.
0148-0731,
103
(
4
), pp.
221
231
.
39.
Allen
,
K. D.
, and
Athanasiou
,
K. A.
, 2005, “
A Surface-Regional and Freeze-Thaw Characterization of the Porcine Temporomandibular Joint Disc
,”
Ann. Biomed. Eng.
0090-6964,
33
(
7
), pp.
951
962
.
40.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
2nd ed.
,
Springer
,
New York
.
41.
Mizuno
,
I.
,
Saburi
,
N.
,
Taguchi
,
N.
,
Kaneda
,
T.
, and
Hoshino
,
T.
, 1990, “
The Fine Structure of the Fibrous Zone of Articular Cartilage in the Rat Mandibular Condyle
,”
Shika Kiso Igakkai Zasshi
0385-0137,
32
(
1
), pp.
69
79
.
42.
Luder
,
H. U.
, and
Schroeder
,
H. E.
, 1990, “
Light and Electron Microscopic Morphology of the Temporomandibular Joint in Growing and Mature Crab-Eating Monkeys (Macaca Fascicularis): The Condylar Articular Layer
,”
Anat. Embryol. (Berl)
0340-2061,
181
(
5
), pp.
499
511
.
43.
Scapino
,
R. P.
,
Obrez
,
A.
, and
Greising
,
D.
, 2006, “
Organization and Function of the Collagen Fiber System in the Human Temporomandibular Joint Disk and Its Attachments
,”
Cells Tissues Organs
1422-6405,
182
(
3–4
), pp.
201
225
.
44.
Forgacs
,
G.
,
Foty
,
R. A.
,
Shafrir
,
Y.
, and
Steinberg
,
M. S.
, 1998, “
Viscoelastic Properties of Living Embryonic Tissues: A Quantitative Study
,”
Biophys. J.
0006-3495,
74
(
5
), pp.
2227
2234
.
45.
Murdock
,
D. R.
,
Ermilov
,
S. A.
,
Spector
,
A. A.
,
Popel
,
A. S.
,
Brownell
,
W. E.
, and
Anvari
,
B.
, 2005, “
Effects of Chlorpromazine on Mechanical Properties of the Outer Hair Cell Plasma Membrane
,”
Biophys. J.
0006-3495,
89
(
6
), pp.
4090
4095
.
46.
Sverdlik
,
A.
, and
Lanir
,
Y.
, 2002, “
Time-Dependent Mechanical Behavior of Sheep Digital Tendons, Including the Effects of Preconditioning
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
1
), pp.
78
84
.
47.
Palevski
,
A.
,
Glaich
,
I.
,
Portnoy
,
S.
,
Linder-Ganz
,
E.
, and
Gefen
,
A.
, 2006, “
Stress Relaxation of Porcine Gluteus Muscle Subjected to Sudden Transverse Deformation as Related to Pressure Sore Modeling
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
5
), pp.
782
787
.
48.
Bibb
,
C. A.
,
Pullinger
,
A. G.
, and
Baldioceda
,
F.
, 1993, “
Serial Variation in Histological Character of Articular Soft Tissue in Young Human Adult Temporomandibular Joint Condyles
,”
Arch. Oral Biol.
0003-9969,
38
(
4
), pp.
343
352
.
49.
Pullinger
,
A. G.
,
Baldioceda
,
F.
, and
Bibb
,
C. A.
, 1990, “
Relationship of TMJ Articular Soft Tissue to Underlying Bone in Young Adult Condyles
,”
J. Dent. Res.
0022-0345,
69
(
8
), pp.
1512
1518
.
50.
Hansson
,
T.
,
Oberg
,
T.
,
Carlsson
,
G. E.
, and
Kopp
,
S.
, 1977, “
Thickness of the Soft Tissue Layers and the Articular Disk in the Temporomandibular Joint
,”
Acta Odontol. Scand.
0001-6357,
35
(
2
), pp.
77
83
.
You do not currently have access to this content.