The deposition of ultrafine aerosols in the respiratory tract presents a significant health risk due to the increased cellular-level response that these particles may invoke. However, the effects of geometric simplifications on local and regional nanoparticle depositions remain unknown for the oral airway and throughout the respiratory tract. The objective of this study is to assess the effects of geometric simplifications on diffusional transport and deposition characteristics of inhaled ultrafine aerosols in models of the extrathoracic oral airway. A realistic model of the oral airway with the nasopharynx (NP) included has been constructed based on computed tomography scans of a healthy adult in conjunction with measurements reported in the literature. Three other geometries with descending degrees of physical realism were then constructed with successive geometric simplifications of the realistic model. A validated low Reynolds number k-ω turbulence model was employed to simulate laminar, transitional, and fully turbulent flow regimes for the transport of 1–200 nm particles. Results of this study indicate that the geometric simplifications considered did not significantly affect the total deposition efficiency or maximum local deposition enhancement of nanoparticles. However, particle transport dynamics and the underlying flow characteristics such as separation, turbulence intensity, and secondary motions did show an observable sensitivity to the geometric complexity. The orientation of the upper trachea was shown to be a major factor determining local deposition downstream of the glottis and should be retained in future models of the respiratory tract. In contrast, retaining the NP produced negligible variations in airway dynamics and could be excluded for predominantly oral breathing conditions. Results of this study corroborate the use of existing diffusion correlations based on a circular oral airway model. In comparison to previous studies, an improved correlation for the deposition of nanoparticles was developed based on a wider range of particle sizes and flow rates, which captures the dependence of the Sherwood number on both Reynolds and Schmidt numbers.

1.
Hood
,
E.
, 2004, “
Nanotechnology: Looking as We Leap
,”
Environ. Health Perspect.
0091-6765,
112
(
13
), pp.
741
749
.
2.
Kreyling
,
W. G.
,
Semmler
,
M.
, and
Moller
,
W.
, 2004, “
Dosimetry and Toxicology of Ultrafine Particles
,”
Journal of Aerosol Medicine
,
17
(
2
), pp.
140
152
.
3.
Maynard
,
A. D.
,
Baron
,
P. A.
,
Foley
,
M.
,
Shvedova
,
A. A.
,
Kisin
,
E. R.
, and
Castranova
,
V.
, 2004, “
Exposure to Carbon Nanotube Material During the Handling of Unrefined Single Walled Carbon Nanotube Material
,”
J. Toxicol. Environ. Health
0098-4108,
67
, pp.
87
107
.
4.
Bernstein
,
G. M.
, 2004, “
A Review of the Influence of Particle Size, Puff Volume, and Inhalation Pattern on the Deposition of Cigarette Smoke Particles in the Respiratory Tract
,”
Inhalation Toxicol.
0895-8378,
16
, pp.
675
689
.
5.
Kittelson
,
D. B.
, 1998, “
Engines and Nanoparticles: A Review
,”
J. Aerosol Sci.
0021-8502,
29
(
5–6
), pp.
575
588
.
6.
Cheng
,
K. H.
,
Cheng
,
Y. S.
,
Yeh
,
H. C.
,
Guilmette
,
R. A.
,
Simpson
,
S. Q.
,
Yang
,
S. Q.
, and
Swift
,
D. L.
, 1996, “
In Vivo Measurements of Nasal Airway Dimensions and Ultrafine Aerosol Depositing in Human Nasal and Oral Airways
,”
J. Aerosol Sci.
0021-8502,
27
, pp.
785
801
.
7.
Broday
,
D. M.
, and
Robinson
,
R.
, 2003, “
Application of Cloud Dynamics to Dosimetry of Cigarette Smoke Particles in the Lungs
,”
Aerosol Sci. Technol.
0278-6826,
37
, pp.
510
527
.
8.
NCRP
, 1997,
Deposition, Retention and Dosimetry of Inhaled Radioactive Substances
,
National Council on Radiation Protection and Measurements
,
Bethesda
.
9.
Chan
,
T. L.
,
Schreck
,
R. M.
, and
Lippmann
,
M.
, 1980, “
Effect of the Laryngeal Jet on Particle Deposition in the Human Trachea and Upper Bronchial Airways
,”
J. Aerosol Sci.
0021-8502,
11
, pp.
447
459
.
10.
Martonen
,
T. B.
,
Zhang
,
Z.
, and
Lessmann
,
R.
, 1993, “
Fluid Dynamics of the Human Larynx and Upper Tracheobronchial Airways
,”
J. Aerosol Sci.
0021-8502,
19
, pp.
133
144
.
11.
Moskal
,
A.
, and
Payatakes
,
A. C.
, 2006, “
Estimation of the Diffusion Coefficient of Aerosol Particle Aggregates Using Brownian Simulation in the Continuum Regime
,”
J. Aerosol Sci.
0021-8502,
37
, pp.
1081
1101
.
12.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
, 2003, “
Species Heat and Mass Transfer in a Human Upper Airway Model
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
25
), pp.
4755
4768
.
13.
Heyder
,
J.
,
Gebhart
,
J.
,
Rudolf
,
G.
,
Schiller
,
C. F.
, and
Stahlhofen
,
W.
, 1986, “
Deposition of Particles in the Human Respiratory Tract in the Size Range of 0.005-15 Microns
,”
J. Aerosol Sci.
0021-8502,
17
(
5
), pp.
811
825
.
14.
Jaques
,
P. A.
, and
Kim
,
C. S.
, 2000, “
Measurement of Total Lung Deposition of Inhaled Ultrafine Particles in Healthy Men and Women
,”
Inhalation Toxicol.
0895-8378,
12
(
8
), pp.
715
731
.
15.
Kim
,
C. S.
, and
Jaques
,
P. A.
, 2004, “
Analysis of Total Respiratory Deposition of Inhaled Ultrafine Particles in Adult Subjects at Various Breathing Patterns
,”
Aerosol Sci. Technol.
0278-6826,
38
(
6
), pp.
525
540
.
16.
Morawska
,
L.
,
Hofmann
,
W.
,
Hitchins-Loveday
,
J.
,
Swanson
,
C.
, and
Mengersen
,
K.
, 2005, “
Experimental Study of the Deposition of Combustion Aerosols in the Human Respiratory Tract
,”
J. Aerosol Sci.
0021-8502,
36
, pp.
939
957
.
17.
Stahlhofen
,
W.
,
Rudolf
,
G.
, and
James
,
A. C.
, 1989, “
Intercomparison of Experimental Regional Aerosol Deposition Data
,”
Journal of Aerosol Medicine
,
2
(
3
), pp.
285
308
.
18.
Heenan
,
A. F.
,
Matida
,
E.
,
Pollard
,
A.
, and
Finlay
,
W. H.
, 2003, “
Experimental Measurements and Computational Modeling of the Flow Field in an Idealized Human Oropharynx
,”
Exp. Fluids
0723-4864,
35
(
1
), pp.
70
84
.
19.
Johnstone
,
A.
,
Uddin
,
M.
,
Pollard
,
A.
,
Heenan
,
A.
, and
Finlay
,
W. H.
, 2004, “
The Flow Inside an Idealised Form of the Human Extra-Thoracic Airway
,”
Exp. Fluids
0723-4864,
37
, pp.
673
689
.
20.
Cheng
,
K. H.
,
Cheng
,
Y. S.
,
Yeh
,
H. C.
, and
Swift
,
D. L.
, 1997, “
An Experimental Method for Measuring Aerosol Deposition Efficiency in the Human Oral Airway
,”
Am. Ind. Hyg. Assoc. J.
0002-8894,
58
, pp.
207
213
.
21.
Cheng
,
Y. S.
,
Su
,
Y. F.
,
Yeh
,
H. C.
, and
Swift
,
D. L.
, 1993, “
Deposition of Thoron Progeny in Human Head Airways
,”
Aerosol Sci. Technol.
0278-6826,
18
, pp.
359
375
.
22.
Cheng
,
K. H.
,
Cheng
,
Y. S.
,
Yeh
,
H. C.
, and
Swift
,
D. L.
, 1997, “
Measurements of Airway Dimensions and Calculation of Mass Transfer Characteristics of the Human Oral Passage
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
476
482
.
23.
Hofmann
,
W.
,
Golser
,
R.
, and
Balashazy
,
I.
, 2003, “
Inspiratory Deposition Efficiency of Ultrafine Particles in a Human Airway Bifurcation Model
,”
Aerosol Sci. Technol.
0278-6826,
37
(
12
), pp.
988
994
.
24.
Shi
,
H.
,
Kleinstreuer
,
C.
,
Zhang
,
Z.
, and
Kim
,
C. S.
, 2004, “
Nanoparticle Transport and Deposition in Bifurcating Tubes With Different Inlet Conditions
,”
Phys. Fluids
1070-6631,
16
(
7
), pp.
2199
2213
.
25.
Kim
,
C. S.
, and
Fisher
,
D.
, 1994, “
Deposition of Ultrafine Particles in the Bifurcation Airway Models
,” in
Abstracts of the Fourth International Aerosol Conference
,
R. C.
Flagan
, ed., Cincinnati,
2
, pp.
888
889
.
26.
Zhang
,
Z.
,
Kleinstreuer
,
C.
,
Donohue
,
J. F.
, and
Kim
,
C. S.
, 2005, “
Comparison of Micro- and Nano-Size Particle Depositions in a Human Upper Airway Model
,”
J. Aerosol Sci.
0021-8502,
36
(
2
), pp.
211
233
.
27.
Nowak
,
N.
,
Kakade
,
P. P.
, and
Annapragada
,
A. V.
, 2003, “
Computational Fluid Dynamics Simulation of Airflow and Aerosol Deposition in Human Lungs
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
374
390
.
28.
Li
,
W. I.
,
Perzl
,
M.
,
Heyder
,
J.
,
Langer
,
R.
,
Brain
,
J. D.
,
Englmeier
,
K. H.
,
Niven
,
R. W.
, and
Edwards
,
D. A.
, 1996, “
Aerodynamics and Aerosol Particle Deaggregation Phenomena in Model Oral-Pharyngeal Cavities
,”
J. Aerosol Sci.
0021-8502,
27
(
8
), pp.
1269
1286
.
29.
Xi
,
J.
, and
Longest
,
P. W.
, 2007, “
Transport and Deposition of Micro-Aerosols in Realistic and Simplified Models of the Oral Airway
,”
Ann. Biomed. Eng.
0090-6964,
35
(
4
), pp.
560
581
.
30.
Matida
,
E. A.
,
Finlay
,
W. H.
, and
Grgic
,
L. B.
, 2004, “
Improved Numerical Simulation of Aerosol Deposition in an Idealized Mouth-Throat
,”
J. Aerosol Sci.
0021-8502,
35
, pp.
1
19
.
31.
Cheng
,
Y. S.
,
Zhou
,
Y.
, and
Chen
,
B. T.
, 1999, “
Particle Deposition in a Cast of Human Oral Airways
,”
Aerosol Sci. Technol.
0278-6826,
31
, pp.
286
300
.
32.
McRobbie
,
D. W.
,
Pritchard
,
S.
, and
Quest
,
R. A.
, 2003, “
Studies of the Human Oropharyngeal Airspaces Using Magnetic Resonance Imaging. 1. Validation of a Three-Dimensional MRI Method for Producing Ex Vivo Virtual and Physical Casts of the Oropharyngeal Airways During Inspiration
,”
Journal of Aerosol Medicine
,
16
(
4
), pp.
401
415
.
33.
Stapleton
,
K. W.
,
Guentsch
,
E.
,
Hoskinson
,
M. K.
, and
Finlay
,
W. H.
, 2000, “
On the Suitability of k-Epsilon Turbulence Modeling for Aerosol Deposition in the Mouth and Throat: A Comparison With Experiment
,”
J. Aerosol Sci.
0021-8502,
31
(
6
), pp.
739
749
.
34.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
,
C. S.
, 2002, “
Micro-Particle Transport and Deposition in a Human Oral Airway Model
,”
J. Aerosol Sci.
0021-8502,
33
(
12
), pp.
1635
1652
.
35.
Gemci
,
T.
,
Corcoran
,
T. E.
, and
Chigier
,
N.
, 2002, “
A Numerical and Experimental Study of Spray Dynamics in a Simple Throat Model
,”
Aerosol Sci. Technol.
0278-6826,
36
, pp.
18
38
.
36.
Oho
,
K.
, and
Amemiya
,
R.
, 1980,
Practical Fiberopitc Bronscopy
,
Igaku-Shoin
,
Tokyo
.
37.
Martonen
,
T. B.
, 1993, “
Mathematical-Model for the Selective Deposition of Inhaled Pharmaceuticals
,”
J. Pharm. Sci.
0022-3549,
82
(
12
), pp.
1191
1199
.
38.
Ellingsen
,
R.
,
Vandevanter
,
C.
,
Shapiro
,
P.
, and
Shapiro
,
G.
, 1995, “
Temporal Variation in Nasal and Oral Breathing in Children
,”
Am. J. Orthod. Dentofacial Orthop.
0889-5406,
107
(
4
), pp.
411
417
.
39.
Ghalichi
,
F.
,
Deng
,
X.
,
Champlain
,
A. D.
,
Douville
,
Y.
,
King
,
M.
, and
Guidoin
,
R.
, 1998, “
Low Reynolds Number Turbulence Modeling of Blood Flow in Arterial Stenoses
,”
Biorheology
0006-355X,
35
(
4&5
), pp.
281
294
.
40.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries, Inc.
,
CA
.
41.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
, 2003, “
Low-Reynolds-Number Turbulent Flows in Locally Constricted Conduits: A Comparison Study
,”
AIAA J.
0001-1452,
41
(
5
), pp.
831
840
.
42.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
, 2004, “
Airflow Structures and Nano-Particle Deposition in a Human Upper Airway Model
,”
J. Comput. Phys.
0021-9991,
198
(
1
), pp.
178
210
.
43.
Longest
,
P. W.
, and
Vinchurkar
,
S.
, 2007, “
Validating CFD Predictions of Respiratory Aerosol Deposition: Effects of Upstream Transition and Turbulence
,”
J. Biomech.
0021-9290,
40
, pp.
305
316
.
44.
Allen
,
M. D.
, and
Raabe
,
O. G.
, 1985, “
Slip Correction Measurements of Spherical Solid Aerosol Particles in an Improved Millikan Apparatus
,”
Aerosol Sci. Technol.
0278-6826,
4
, pp.
269
286
.
45.
Hinds
,
W. C.
, 1999,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
,
Wiley
,
New York
.
46.
Longest
,
P. W.
,
Kleinstreuer
,
C.
, and
Buchanan
,
J. R.
, 2004, “
Efficient Computation of Micro-Particle Dynamics Including Wall Effects
,”
Comput. Fluids
0045-7930,
33
(
4
), pp.
577
601
.
47.
Young
,
J.
, and
Leeming
,
A.
, 1997, “
A Theory of Particle Depositon in Turbulent Pipe Flow
,”
J. Fluid Mech.
0022-1120,
340
, pp.
129
159
.
48.
Friedlander
,
S. K.
, 2000,
Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics
, 2nd ed.,
Oxford University Press
,
New York
.
49.
Longest
,
P. W.
, and
Kleinstreuer
,
C.
, 2003, “
Comparison of Blood Particle Deposition Models for Non-Parallel Flow Domains
,”
J. Biomech.
0021-9290,
36
(
3
), pp.
421
430
.
50.
Balashazy
,
I.
, and
Hofmann
,
W.
, 1993, “
Particle Deposition in Airway Bifurcations. I. Inspiratory Flow
,”
J. Aerosol Sci.
0021-8502,
24
, pp.
745
772
.
51.
Martonen
,
T. B.
,
Guan
,
X.
, and
Schreck
,
R. M.
, 2001, “
Fluid Dynamics in Airway Bifurcations: I. Primary Flows
,”
Inhalation Toxicol.
0895-8378,
13
(
4
), pp.
261
279
.
52.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
, 2001, “
Effect of Particle Inlet Distributions on Deposition in a Triple Bifurcation Lung Airway Model
,”
Journal of Aerosol Medicine
,
14
(
1
), pp.
13
29
.
53.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
,
C. S.
, 2001, “
Flow Structure and Particle Transport in a Triple Bifurcation Airway Model
,”
ASME Trans. J. Fluids Eng.
0098-2202,
123
(
2
), pp.
320
330
.
54.
Balashazy
,
I.
,
Hofmann
,
W.
, and
Heistracher
,
T.
, 1999, “
Computation of Local Enhancement Factors for the Quantification of Particle Deposition Patterns in Airway Bifurcations
,”
J. Aerosol Sci.
0021-8502,
30
, pp.
185
203
.
55.
Longest
,
P. W.
, and
Xi
,
J.
, 2007, “
Computational Investigation of Particle Inertia Effects on Submicron Aerosol Deposition in the Respiratory Tract
,”
J. Aerosol Sci.
0021-8502,
38
(
1
), pp.
111
130
.
56.
Ingham
,
D. B.
, 1991, “
Diffusion of Aerosols in the Entrance Region of a Smooth Cylindrical Pipe
,”
J. Aerosol Sci.
0021-8502,
22
(
3
), pp.
253
257
.
57.
Gill
,
P. E.
, and
Murray
,
W.
, 1978, “
Algorithms for the Solution of the Nonlinear Least-Squares Problem
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
15
(
5
), pp.
977
992
.
58.
Cheng
,
Y. S.
, 2003, “
Aerosol Deposition in the Extrathoracic Region
,”
Aerosol Sci. Technol.
0278-6826,
37
, pp.
659
671
.
59.
Cohen
,
B. S.
, and
Asgharian
,
B.
, 1990, “
Deposition of Ultrafine Particles in the Upper Airways: An Empirical Analysis
,”
J. Aerosol Sci.
0021-8502,
21
, pp.
789
797
.
60.
Manninen
,
M.
,
Taivassalo
,
V.
, and
Kallio
,
S.
, 1996, “
On the Mixture Model for Multiphase Flow
,” Technical Research Center of Finland, VTT Publication, No. 288.
61.
Matida
,
E. A.
,
Finlay
,
W. H.
,
Breuer
,
M.
, and
Lange
,
C. F.
, 2006, “
Improving Prediction of Aerosol Deposition in an Idealized Mouth Using Large-Eddy Simulation
,”
Journal of Aerosol Medicine
,
19
(
3
), pp.
290
300
.
62.
Jin
,
H. H.
,
Fan
,
J. R.
,
Zeng
,
M. J.
, and
Cen
,
K. F.
, 2007, “
Large Eddy Simulation of Inhaled Particle Deposition Within the Human Upper Respiratory Tract
,”
J. Aerosol Sci.
0021-8502,
38
, pp.
257
268
.
63.
McRobbie
,
D. W.
, and
Pritchard
,
S. E.
, 2005, “
Studies of the Human Oropharyngeal Airspaces Using Magnetic Resonance Imaging. III. The Effects of Device Resistance With Forced Maneuver and Tidal Breathing on Upper Airway Geometry
,”
Journal of Aerosol Medicine
,
18
(
3
), pp.
325
336
.
64.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
, 2002, “
Transient Airflow Structures and Particle Transport in a Sequentially Branching Lung Airway Model
,”
Phys. Fluids
1070-6631,
14
(
2
), pp.
862
880
.
65.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
,
C. S.
, 2002, “
Cyclic Micron-Size Particle Inhalation and Deposition in a Triple Bifurcation Lung Airway Model
,”
J. Aerosol Sci.
0021-8502,
33
(
2
), pp.
257
281
.
66.
Ehtezazi
,
T.
,
Horsfield
,
M.
,
Barry
,
P.
, and
O’Callaghan
,
C.
, 2004, “
Dynamic Change of the Upper Airway During Inhalation Via Aerosol Delivery Devices
,”
Journal of Aerosol Medicine
,
14
(
4
), pp.
325
332
.
67.
Heenan
,
A. F.
,
Finlay
,
W. H.
,
Grgic
,
B.
,
Pollard
,
A.
, and
Burnell
,
P. K. P.
, 2004, “
An Investigation of the Relationship Between the Flow Field and Regional Deposition in Realistic Extra-Thoracic Airways
,”
J. Aerosol Sci.
0021-8502,
35
(
8
), pp.
1013
1023
.
68.
Lin
,
T.
,
Breysse
,
P.
,
Laube
,
B.
, and
Swift
,
D.
, 2001, “
Mouthpiece Diameter Affects Deposition Efficiency in Cast Models of the Human Oral Airways
,”
Journal of Aerosol Medicine
,
14
(
3
), pp.
335
341
.
69.
Pritchard
,
S. E.
, and
McRobbie
,
D. W.
, 2004, “
Studies of the Human Oropharyngeal Airspaces Using Magnetic Resonance Imaging. II. The Use of Three-Dimensional Gated MRI to Determine the Influence of Mouthpiece Diameter and Resistance of Inhalation Devices on the Oropharyngeal Airspace Geometry
,”
Journal of Aerosol Medicine
,
14
(
4
), pp.
310
324
.
70.
Brancatisano
,
T.
,
Collett
,
P. W.
, and
Engel
,
L. A.
, 1983, “
Respiratory Movements of the Vocal Cords
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
0161-7567,
54
(
5
), pp.
1269
1276
.
71.
Corcoran
,
T.
, and
Chigier
,
N.
, 2000, “
Characterization of the Laryngeal Jet Using Phase Doppler Interferometry
,”
Journal of Aerosol Medicine
,
13
(
2
), pp.
125
137
.
72.
Renotte
,
C.
,
Bouffioux
,
V.
, and
Wilquem
,
F.
, 2000, “
Numerical 3D Analysis of Oscillatory Flow in the Time-Varying Laryngeal Channel
,”
J. Biomech.
0021-9290,
33
(
12
), pp.
1637
1644
.
73.
Rodenstein
,
D. O.
,
Dooms
,
G.
,
Thomas
,
Y.
,
Liistro
,
G.
,
Stanescu
,
D. C.
,
Culee
,
C.
, and
Auberttulkens
,
G.
, 1990, “
Pharyngeal Shape and Dimensions in Healthy-Subjects, Snorers, and Patients With Obstructive Sleep-Apnea
,”
Thorax
0040-6376,
45
(
10
), pp.
722
727
.
74.
Sosnowski
,
T. R.
,
Moskal
,
A.
, and
Gradon
,
L.
, 2006, “
Dynamics of Oropharyngeal Aerosol Transport and Deposition With the Realisitic Flow Pattern
,”
Inhalation Toxicol.
0895-8378,
18
(
10
), pp.
773
780
.
75.
Sosnowski
,
T. R.
,
Moskal
,
A.
, and
Gradon
,
L.
, 2007, “
Mechanisms of Aerosol Particle Deposition in the Oro-Pharynx Under Non-Steady Airflow
,”
Ann. Occup. Hyg.
0003-4878,
51
(
1
), pp.
19
25
.
You do not currently have access to this content.