This paper investigates the mechanical behavior of electrospun polycaprolactone (PCL) under tensile loading. PCL in bulk form degrades slowly and is biocompatible, two properties that make it a viable option for tissue engineering applications in biomedicine. Of particular interest is the use of electrospun PCL tubes as scaffolds for tissue engineered blood vessel implants. Stress relaxation and tensile tests have been conducted with specimens at room temperature (21°C) and 37°C. Additionally, to probe the effects of moisture on mechanical behavior, specimens were tested either dry (in air) or submerged in water. In general, the electrospun PCL was found to exhibit rate dependence, as well as some dependence on the test temperature and on whether the sample was wet or dry. Two different models were investigated to describe the experimentally observed material behavior. The models used were Fung’s theory of quasilinear viscoelasticity (QLV) and the eight-chain model developed for rubber elastomers by Arruda and Boyce (1993, “A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials,” J. Mech. Phys. Solids, 41(2), pp. 389–412). The implementation and fitting results, as well as the advantages and disadvantages of each model, are presented. In general, it was found that the QLV theory provided a better fit.

1.
2002, National Vital Statistics Report, Vol.
50
, No.
15
.
2.
Yoshimoto
,
H.
,
Shin
,
Y. M.
,
Terai
,
H.
, and
Vacanti
,
J. P.
, 2003, “
A Biodegradable Nanofiber Scaffold by Electrospinning and its Potential for Bone Tissue Engineering
,”
Biomaterials
0142-9612,
24
, pp.
2077
2082
.
3.
Gibson
,
P. W.
,
Schreuder-Gibson
,
H. L.
, and
Rivlin
,
D.
, 1999, “
Electrospun Fiber Mats: Transport Properties
,”
AIChE J.
0001-1541,
45
, pp.
190
195
.
4.
Huang
,
L.
,
Nagapaudi
,
K.
,
Apkarian
,
R. P.
, and
Chaikof
,
E. L.
, (2001), “
Engineered Collagen-Peo Nanofibers and Fabrics
,”
J. Biomater. Sci., Polym. Ed.
0920-5063,
12
, pp.
979
993
.
5.
Doshi
,
J.
, and
Reneker
,
D. H. J.
, 1995, “
Electrospinning Process and Applications of Electrospun Fibers
,”
J. Electrost.
0304-3886,
35
(
2/3
), pp.
151
160
.
6.
Buchko
,
C. J.
,
Chen
,
L. C.
,
Shen
,
Y.
, and
Martin
,
D. C.
, 1999, “
Processing and Microstructural Characterization of Porous Biocompatible Protein Polymer Thin Films
,”
Polymer
0032-3861,
40
(
26
), pp.
7397
7407
.
7.
Yavuz
,
H.
, and
Babaç
,
C.
, 2003, “
Preparation and Biodegradation of Starch/Polycaprolactone Films
,”
J. Polym. Environ.
1566-2543,
11
(
3
), pp.
107
113
.
8.
Klymä
,
J.
, and
Seppälä
,
J. V.
, 1997, “
Synthesis and Characterization of a Biodegradable Thermoplastic Poly(Ester-Urethane) Elastomer
,”
Macromolecules
0024-9297,
30
, pp.
2876
2882
.
9.
Lee
,
K. H.
,
Kim
,
H. Y.
,
Khil
,
M. S.
,
Ra
,
Y. M.
, and
Lee
,
D. R.
, 2003, “
Characterization of Nano-Structured Poly(ε-Caprolactone) Nonwoven Mats Via Electrospinning
,”
Polymer
0032-3861,
44
, pp.
1287
1294
.
10.
Chernoff
,
E.
, and
Chernoff
,
D.
, 1995, “
Atomic Force Microscope Images of Collagen Fibers
,”
Mater. Sci. Eng., C
0928-4931,
C3
, pp.
101
107
.
11.
Formhals, 1934, U.S. Patent No. 1,975,504.
12.
Taylor
,
G. I.
, 1969, “
Electrically Driven Jets
,”
Proc. R. Soc. London, Ser. A
1364-5021,
313
(
1515
), pp.
453
75
.
13.
Reneker
,
D. H.
,
Yarin
,
A. L.
,
Fong
,
H.
, and
Koombhonse
,
S. J.
, 2000, “
Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning
,”
J. Appl. Phys.
0021-8979,
87
(
9
), pp.
4531
4537
.
14.
Shin
,
Y. M.
,
Hohman
,
M. M.
,
Brenner
,
M. P.
, and
Rutledge
,
G. C.
, 2001, “
Electrospinning: A Whipping Fluid Jet Generates Submicron Polymer Fibers
,”
Appl. Phys. Lett.
0003-6951,
78
(
8
), pp.
1149
1151
.
15.
Shin
,
Y. M.
,
Hohman
,
M. M.
,
Brenner
,
M. P.
, and
Rutledge
,
G. C.
, 2001, “
Experimental Characterization of Electrospinning: The Electrically Forced Jet and Instabilities
,”
Polymer
0032-3861,
42
, pp.
9955
9967
.
16.
Reneker
,
D. H.
, and
Chun
,
I.
, 1996, “
Nanometre Diameter Fibres of Polymer, Produced by Electrospinning
,”
Nanotechnology
0957-4484,
7
(
3
), pp.
216
223
.
17.
Albin
,
F.
, 1993,
Nonwovens: Theory, Process, Performance, and Testing
,
Tappi
,
Atlanta
, Chap. 5.
18.
Fung
,
Y. C. B.
,
Perrone
,
N.
, and
Anliker
,
M.
, 1972,
Biomechanics: Its Foundations and Objectives
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
181
208
.
19.
Woo
,
S. L. Y.
,
Gomez
,
M. A.
, and
Akeson
,
W. H.
, 1981, “
The Time and History-Dependent Viscoelastic Properties of the Canine Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
0148-0731,
103
, pp.
293
298
.
20.
Kwan
,
M. K.
,
Lin
,
T. H. C.
, and
Woo
,
S. L. Y.
, 1993, “
On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament
,”
J. Biomech.
0021-9290,
26
(
4/5
), pp.
447
452
.
21.
Miller
,
C. E.
,
Vanni
,
M. A.
, and
Keller
,
B. B.
, 1997, “
Characterization of Passive Embryonic Myocardium by Quasi-Linear Viscoelasticity Theory
,”
J. Biomech.
0021-9290,
30
(
9
) pp.
985
988
.
22.
Kim
,
S. M. K.
,
McCulloch
,
T. M.
, and
Rim
,
K.
, 1999, “
Comparison of Viscoelastic Properties of the Pharyngeal Tissue: Human and Canine
,”
Dysphagia
0179-051X,
14
, pp.
8
16
.
23.
Johnson
,
G. A.
,
Tramaglini
,
D. M.
,
Levine
,
R. E.
,
Ohno
,
K.
,
Choi
,
N. Y.
, and
Woo
,
S. L. Y.
, 1994, “
Tensile and Viscoelastic Properties of Human Patellar Tendon
,”
J. Orthop. Res.
0736-0266,
12
, pp.
796
803
.
24.
Elliott
,
D. M.
,
Robinson
,
P. S.
,
Gimbel
,
J. A.
,
Sarver
,
J. J.
,
Abboud
,
J. A.
,
Iozzo
,
R. V.
, and
Soslowsky
,
L. J.
, 2003, “
Effect of Altered Matrix Proteins on Quasilinear Viscoelastic Properties in Transgenic Mouse Tail Tendons
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
599
605
.
25.
Carew
,
E. O.
,
Talman
,
E. A.
,
Boughner
,
D. R.
, and
Vesely
,
I.
, 1999, “
Quasi-Linear Viscoelastic Theory Applied to Internal Shearing of Porcine Aortic Valve Leaflets
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
386
392
.
26.
Toms
,
S. R.
,
Dakin
,
G. J.
,
Lemons
,
J. E.
, and
Eberhardt
,
A. W.
, 2002, “
Quasilinear Viscoelastic Behavior of the Human Periodontal Ligament
,”
J. Biomech.
0021-9290,
35
, pp.
1411
1415
.
27.
Lin
,
H. C.
,
Kwan
,
M. C.
, and
Woo
,
S. L. Y.
, 1992, “
On the Stress Relaxation Properties of Anterior Cruciate Ligament (ACL)
,”
Adv. Bioeng.
0360-9960,
22
, pp.
5
6
.
28.
Thomopoulos
,
S.
,
Williams
,
G. R.
,
Gimbel
,
J. A.
,
Favata
,
M.
, and
Soslowsky
,
L. J.
, 2003, “
Variation of Biomechanical, Structural, and Compositional Properties Along the Tendon to Bone Insertion Site
,”
J. Orthop. Res.
0736-0266,
21
, pp.
413
419
.
29.
Rousseau
,
E. P. M.
,
Sauren
,
A. A. H. J.
,
Van Hout
,
M. C.
, and
Van Steenhoven
,
A. A.
, 1983, “
Elastic and Viscoelastic Material Behaviour of Fresh and Glutaraldehyde-Treated Porcine Aortic Valve Tissue
,”
J. Biomech.
0021-9290,
16
(
5
), pp.
339
348
.
30.
Sauren
,
A. A. H. J.
,
Van Hout
,
M. C.
,
Van Steenhoven
,
A. A.
,
Veldpaus
,
F. E.
, and
Janssen
,
J. D.
, 1983, “
The Mechanical Properties of Porcine Aortic Valve Leaflets
,”
J. Biomech.
0021-9290,
16
(
5
), pp.
327
337
.
31.
Best
,
T. M.
,
McElhaney
,
J.
,
Garrett
,
W. E.
, and
Myers
,
B. S.
, 1994, “
Characterization of the Passive Responses of Live Skeletal Muscle Using the Quasi-Linear Theory of Viscoelasticity
,”
J. Biomech.
0021-9290,
27
(
4
), pp.
413
419
.
32.
Funk
,
J. R.
,
Hall
,
G. W.
,
Crandall
,
J. R.
, and
Pilkey
,
W. D.
, 2000, “
Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
15
22
.
33.
Haut
,
R. C.
, and
Little
,
R. W.
, 1972, “
A. Constitutive Equation for Collagen Fibers
,”
J. Biomech.
0021-9290,
5
, pp.
423
430
.
34.
Huyghe
,
J. M.
,
Van Campen
,
D. H.
,
Arts
,
T.
, and
Heethaar
,
R. M.
, 1991, “
The Constitutive Behaviour of Passive Heart Muscle Tissue: A Quasi-Linear Viscoelastic Formulation
,”
J. Biomech.
0021-9290,
24
(
9
), pp.
841
849
.
35.
Doehring
,
T. C.
,
Carew
,
E. O.
, and
Vesely
,
I.
, 2004, “
The Effect of Strain Rate on the Viscoelastic Response of Aortic Valve Tissue: A Direct-Fit Approach
,”
Ann. Biomed. Eng.
0090-6964,
32
(
2
), pp.
223
232
.
36.
Arruda
,
E. M.
, and
Boyce
,
M. C.
, 1993, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
0022-5096,
41
(
2
), pp.
389
412
.
37.
Bischoff
,
J. E.
,
Arruda
,
E. M.
, and
Grosh
,
K.
, 2000, “
Finite Element Modeling of Human Skin Using an Isotropic, Nonlinear Elastic Constitutive Model
,”
J. Biomech.
0021-9290,
33
, pp.
645
652
.
38.
Bischoff
,
J. E.
,
Arruda
,
E. M.
, and
Grosh
,
K.
, 2002, “
A Microstructurally Based Orthotropic Hyperelastic Constitutive Law
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
570
579
.
39.
Bischoff
,
J. E.
,
Arruda
,
E. M.
, and
Grosh
,
K.
, 2002, “
Finite Element Simulations of Orthotropic Hyperelasticity
,”
Finite Elem. Anal. Design
0168-874X,
38
, pp.
983
998
.
40.
Bischoff
,
J. E.
,
Arruda
,
E. M.
, and
Grosh
,
K.
, 2002, “
Orthotropic Hyperelasticity in Terms of an Arbitrary Molecular Chain Model
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
198
201
.
41.
Lee
,
K.
,
Lee
,
B.
,
Kim
,
C.
,
Kim
,
H.
,
Kim
,
K.
, and
Nah
,
C.
, 2005, “
Stress-Strain Behavior of the Electrospun Thermoplastic Polyurethane Elastomer Fiber Mats
,”
Macromolecular Research
,
13
(
5
), pp.
441
445
.
42.
Woo
,
S. L. Y.
,
Johnson
,
G. A.
, and
Smith
,
B. A.
, 1993, “
Mathematical Modeling of Ligaments and Tendons
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
468
473
.
43.
Nigul
,
I.
, and
Nigul
,
U.
, 1987, “
On Algorithms of Evaluation of Fung’s Relaxation Function Parameters
,”
J. Biomech.
0021-9290,
20
(
4
), pp.
343
352
.
44.
Dortmans
,
L. J. M. G.
,
Sauren
,
A. A. H. J.
, and
Rousseau
,
E. P. M.
, 1984, “
Parameter Estimation Using the Quasi-Linear Viscoelastic Model Proposed by Fung
,”
ASME J. Biomech. Eng.
0148-0731,
106
, pp.
198
203
.
45.
Sauren
,
A. A. H. J.
, and
Rousseau
,
E. P. M.
, 1983, “
A. Concise Sensitivity Analysis of the Quasi-Linear Viscoelastic Model Proposed by Fung
,”
ASME J. Biomech. Eng.
0148-0731,
105
, pp.
92
95
.
46.
Thomopoulos
,
S.
,
Williams
,
G. R.
, and
Soslowsky
,
L. J.
, 2003, “
Tendon to Bone Healing: Differences in Biomechanical, Structural, and Compositional Properties Due to a Range of Activity Levels
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
106
113
.
47.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
, 1997, “
Radial Tensile Properties of the Lumber Annulus Fibrosis are Site and Degeneration Dependent
,”
J. Orthop. Res.
0736-0266,
15
, pp.
814
819
.
48.
Danto
,
M. I.
, and
Woo
,
S. L. Y.
, 1993, “
The Mechanical Properties of Skeletally Mature Rabbit Anterior Cruciate Ligament and Patellar Tendon Over a Range of Strain Rates
,”
J. Orthop. Res.
0736-0266,
11
, pp.
58
67
.
49.
Bischoff
,
J. E.
,
Arruda
,
E. M.
, and
Grosh
,
K.
, 2001, “
A New Constitutive Model for the Compressibility of Elastomers at Finite Deformations
,”
Rubber Chem. Technol.
0035-9475,
74
, pp.
541
559
.
50.
Bergström
,
J. S.
, and
Boyce
,
M. C.
, 2001, “
Deformation of Elastomeric Networks: Relation Between Molecular Level Deformation and Classical Statistical Mechanics Models of Rubber Elasticity
,”
Macromolecules
0024-9297,
34
(
3
), pp.
614
626
.
51.
Bergström
,
J. S.
, and
Boyce
,
M. C.
, 2000, “
Large Strain Time-Dependent Behavior of Filled Elastomers
,”
Mech. Mater.
0167-6636,
32
(
11
), pp.
627
644
.
You do not currently have access to this content.