Magnetic resonance imaging offers unique insights into three-dimensional foot bone motion. Thereby, adequate devices enabling defined loading and positioning of the foot are needed to profit from this noninvasive procedure. Tarsal bone positions of three healthy subjects were repeatedly measured in a pronated and a supinated foot excursion under bodyweight with a newly developed MR imaging procedure. The quantification of the transferred motion from the loading and positioning device to the calcaneus and an estimation of the required degrees to distinguish between tarsal joint rotations were used to evaluate the applicability of the procedure to investigate tarsal joint motion. It was found that 45–70% (75–95%) of the externally applied 15deg foot pronation (supination) were transferred to the calcaneus. Furthermore, the talonavicular joint showed the largest amount of rotation up to 20deg eversion-inversion and abadduction, followed by the subtalar joint showing nearly half of that motion. Considerably less motion was found between the cuboid and calcaneus (about 26deg) and the cuboid nearly did not rotate relative to the navicular (on average 1deg). The estimated necessary differences between tarsal joint movements to identify individual kinematic behavior were in the order of 2deg (4deg related to the talonavicular joint). Since the results were in agreement with the literature, it is concluded that the applicability of the presented procedure to investigate tarsal bone mechanics is warranted. The possibility to evaluate 3D tarsal joint motion in combination with bone morphology (e.g., joint curvature) may provide new insights in the still uncertain relationship between foot function and foot morphology.

1.
Cornwall
,
M. W.
, and
McPoil
,
T. G.
, 2004, “
Influence of Rearfoot Postural Alignment on Rearfoot Motion During Walking
,”
Foot
,
14
(
3
), pp.
133
138
.
2.
Hunt
,
A. E.
, and
Smith
,
R. M.
, 2004, “
Mechanics and Control of the Flat Versus Normal Foot During the Stance Phase of walking
,”
Clin. Biomech.
,
19
(
4
), pp.
391
397
.
3.
Razeghi
,
M.
, and
Batt
,
M. E.
, 2002, “
Foot Type Classification: A Critical Review of Current Methods
,”
Gait and Posture
0966-6362,
15
(
3
), pp.
282
291
.
4.
Rothstein
,
J. M.
, 1985,
Measurement in Physical Therapy
,
Churchill Livingstone
,
New York
.
5.
Scharfbillig
,
R.
,
Evans
,
A. M.
,
Copper
,
A. W.
,
Williams
,
M.
,
Scutter
,
S.
,
Iasiello
,
H.
, and
Redmond
,
A.
, 2004, “
Criterion Validation of Four Criteria of the Foot Posture Index
,”
JAPMA
,
94
(
1
), pp.
31
38
.
6.
Maslen
,
B. A.
, and
Ackland
,
T. R.
, 1994, “
Radiographic Study of Skin Displacement Errors in the Foot and Ankle During Standing
,”
Clin. Biomech.
,
9
(
5
), pp.
291
296
.
7.
Tranberg
,
R.
, and
Karlsson
,
D.
, 1998, “
The Relative Skin Movement of the Foot: A 2-D Roentgen Photogrammetry Study
,”
Clin. Biomech.
,
13
(
1
), pp.
71
76
.
8.
Westblad
,
P.
,
Hashimoto
,
T.
,
Winson
,
I.
,
Lundberg
,
A.
, and
Arndt
,
A.
, 2002, “
Differences in Ankle-Joint Complex Motion During the Stance Phase of Walking as Measured by Superficial and Bone-Anchored Markers
,”
Foot Ankle Int.
1071-1007,
23
(
9
), pp.
856
863
.
9.
Udupa
,
J. K.
,
Hirsch
,
B. E.
,
Hillstrom
,
H. J.
,
Bauer
,
G. R.
, and
Kneeland
,
J. B.
, 1998, “
Analysis of In Vivo 3-D Internal Kinematics of the Joints of the Foot
,”
IEEE Trans. Biomed. Eng.
0018-9294,
45
(
11
), pp.
1387
1396
.
10.
Stindel
,
E.
,
Udupa
,
J. K.
,
Hirsch
,
B. E.
,
Odhner
,
D.
, and
Couture
,
C.
, 1998, “
3D Morphology of the Rearfoot From MRI Data: Technical Validation and Clinical Description
,”
Proc. SPIE
0277-786X,
3335
, pp.
479
487
.
11.
Stindel
,
E.
,
Udupa
,
J. K.
,
Hirsch
,
B. E.
,
Odhner
,
D.
, and
Couture
,
C.
, 1999, “
3D MR Image Analysis of the Morphology of the Rear Foot: Application to Classification of Bones
,”
Comput. Med. Imaging Graph.
0895-6111,
23
(
2
), pp.
75
83
.
12.
Stindel
,
E.
,
Udupa
,
J. K.
,
Hirsch
,
B. E.
, and
Odhner
,
D.
, 1999, “
A Characterization of the Geometric Architecture of the Peritalar Joint Complex via MRI: An Aid to the Classification of Foot Type
,”
IEEE Trans. Med. Imaging
0278-0062,
18
(
9
), pp.
753
763
.
13.
Stindel
,
E.
,
Udupa
,
J. K.
,
Hirsch
,
B. E.
, and
Odhner
,
D.
, 2001, “
An in Vivo Analysis of the Motion of the Peri-Talar Joint Complex Based on MR Imaging
,”
IEEE Trans. Biomed. Eng.
0018-9294,
48
(
2
), pp.
236
247
.
14.
Fraser
,
G. A.
, and
Ahmed
,
A. M.
, 1983, “
Passive Rotational Stability of the Weight-Bearing Talocrural Joint: An In Vitro Biomechanical Study
,”
Orthop Trans.
,
7
(
2
), p.
248
.
15.
Hintermann
,
B.
,
Nigg
,
B. M.
, and
Cole
,
G. K.
, 1994, “
Influence of Selective Arthrodesis on the Movement Transfer Between Calcaneus and Tibia In-Vitro
,”
Clin. Biomech.
,
9
(
6
), pp.
356
361
.
16.
Michelson
,
J. D.
,
Clarke
,
H. J.
, and
Jinnah
,
R. H.
, 1990, “
The Effect of Loading on Tibiotalar Alignment in Cadaver Ankles
,”
Foot Ankle Int.
1071-1007,
10
(
5
), pp.
280
284
.
17.
Mattingly
,
B.
,
Talkwalkar
,
V.
,
Tylkowski
,
C.
,
Stevens
,
D. B.
,
Hardy
,
P. A.
, and
Pienkowski
,
D.
, 2006, “
Three-Dimensional In Vivo Motion of Adult Hind Foot Bones
,”
J. Biomech.
0021-9290,
39
(
4
), pp.
726
733
.
18.
Ringleb
,
S. I.
,
Udupa
,
J. K.
,
Siegler
,
S.
,
Imhauser
,
C. W.
,
Hirsch
,
B. E.
,
Liu
,
J.
,
Odhner
,
D.
,
Okereke
,
E.
, and
Roach
,
N.
, 2005, “
The Effect of Ankle Ligament Damage and Surgical Reconstructions on the Mechanics of the Ankle and Subtalar Joints Revealed by Three-Dimensional Stress MRI
,”
J. Orthop. Res.
0736-0266,
23
(
4
), pp.
743
749
.
19.
Siegler
,
S.
,
Udupa
,
J. K.
,
Ringleb
,
S. I.
,
Imhauser
,
C. W.
,
Hirsch
,
B. E.
,
Odhner
,
D.
,
Saha
,
P. K.
,
Okereke
,
E.
, and
Roach
,
N.
, 2005, “
Mechanics of the Ankle and Subtalar Joints Revealed Through a 3D Quasi-Static Stress MRI Technique
,”
J. Biomech.
0021-9290,
38
(
3
), pp.
567
578
.
20.
Wolf
,
P.
, 2006, “
Tarsal Kinematics
,” Ph.D. thesis, ETH Zurich, Switzerland.
21.
Hunt
,
A. E.
,
Fahey
,
A. J.
, and
Smith
,
R. M.
, 2000, “
Static Measures of Calcaneal Deviation and Arch Angle as Predictors of Rearfoot Motion During Walking
,”
Aust. J. Physiother.
,
46
(
1
), pp.
9
16
.
22.
Stacoff
,
A.
,
Nigg
,
B. M.
,
Reinschmidt
,
C.
,
van den Bogert
,
A. J.
,
Lundberg
,
A.
,
Stussi
,
E.
, and
Denoth
,
J.
, 2000, “
Movement Coupling at the Ankle During the Stance Phase of Running
,”
Foot Ankle Int.
1071-1007,
21
(
3
), pp.
232
239
.
23.
Isman
,
R. E.
, and
Inman
,
V. T.
, 1969, “
Anthropometric Studies of the Human Foot and Ankle
,”
Bull. Prosthet. Res.
0007-506X,
11
, pp.
97
129
.
24.
Root
,
M. L.
,
Weed
,
J. H.
,
Sgarlato
,
T. E.
, and
Bluth
,
D. R.
, 1966, “
Axis of Motion of the Subtalar Joint
,”
JAPMA
,
56
(
4
), pp.
149
155
.
25.
Van Langelaan
,
E. J.
, 1983, “
A Kinematical Analysis of the Tarsal Joints
,”
Acta Orthop. Scand.
0001-6470,
54
(
204
) pp.
135
265
.
26.
Besl
,
P. J.
, and
McKay
,
N. D.
, 1992, “
A Method for Registration of 3D Shapes
,”
IEEE TAPMI
,
14
(
2
), pp.
239
256
.
27.
Lundberg
,
A.
,
Svensson
,
O. K.
,
Bylund
,
C.
,
Goldie
,
I.
, and
Selvik
,
G.
, 1989, “
Kinematics of the Ankle Foot Complex.2. Pronation and Supination
,”
Foot Ankle Int.
1071-1007,
9
(
5
), pp.
248
253
.
28.
Engsberg
,
J. R.
, 1987, “
A Biomechanical Analysis of the Talocalcaneal Joint—In Vitro
,”
J. Biomech.
0021-9290,
20
(
4
), pp.
429
442
.
29.
Leardini
,
A.
,
Stagni
,
R.
, and
O’Connor
,
J. J.
, 2001, “
Mobility of the Subtalar Joint in the Intact Ankle Complex
,”
J. Biomech.
0021-9290,
34
(
6
), pp.
805
809
.
30.
Benink
,
R. J.
, 1985, “
The Constraint Mechanism of the Human Tarsus
,”
Acta Orthop. Scand.
0001-6470,
56
(
215
), pp.
49
68
.
31.
Parks
,
N.
,
Hirsch
,
H. J.
,
Hillstrom
,
H. J.
, and
Udupa
,
J. K.
, 1994, “
Stereometry and 3-D MRI Reconstructions for Kinematics of the Rearfoot: A Cadaver Study
,”
Proceedings 16th International Confonference IEEE Engineering in Medicine and Biology Society
, pp.
562
563
.
32.
Manter
,
J. T.
, 1941, “
Movements of the Subtalar and Transverse Tarsal Joints
,”
Anat. Rec.
0003-276X,
80
(
4
), pp.
397
410
.
33.
Shephard
,
E.
, 1951, “
Tarsal Movements
,”
J. Bone Joint Surg. Br.
0301-620X,
33
(
2
), pp.
258
263
.
34.
Keller Chandra
,
S.
, 2005, “
Konstruktion Einer Auslenkungsapparatur Zur Untersuchung Des Rueckfusses mittels Magnet Resonanz Tomographie
,” Diploma thesis, ETH Zurich, Switzerland.
You do not currently have access to this content.