Within the aortic valve (AV) leaflet resides a population of interstitial cells (AVICs), which serve to maintain tissue structural integrity via protein synthesis and enzymatic degradation. AVICs are typically characterized as myofibroblasts, exhibit phenotypic plasticity, and may play an important role in valve pathophysiology. While it is known that AVICs can respond to mechanical stimuli in vitro, the level of in vivo AVIC deformation and its relation to local collagen fiber reorientation during the cardiac cycle remain unknown. In the present study, the deformation of AVICs was investigated using porcine AV glutaraldehyde fixed under 090mmHg transvalvular pressures. The resulting change in nuclear aspect ratio (NAR) was used as an index of overall cellular strain, and dependencies on spatial location and pressure loading levels quantified. Local collagen fiber alignment in the same valves was also quantified using small angle light scattering. A tissue-level finite element (FE) model of an AVIC embedded in the AV extracellular matrix was also used explore the relation between AV tissue- and cellular-level deformations. Results indicated large, consistent increases in AVIC NAR with transvalvular pressure (e.g., from mean of 1.8 at 0mmHg to a mean of 4.8 at 90mmHg), as well as pronounced layer specific dependencies. Associated changes in collagen fiber alignment indicated that little AVIC deformation occurs with the large amount of fiber straightening for pressures below 1mmHg, followed by substantial increases in AVIC NAR from 4mmHgto90mmHg. While the tissue-level FE model was able to capture the qualitative response, it also underpredicted the extent of AVIC deformation. This result suggested that additional micromechanical and fiber-compaction effects occur at high pressure levels. The results of this study form the basis of understanding transvalvular pressure-mediated mechanotransduction within the native AV and first time quantitative data correlating AVIC nuclei deformation with AV tissue microstructure and deformation.

1.
Filip
,
D. A.
,
Radu
,
A.
, and
Simionescu
,
M.
, 1986, “
Interstitial Cells of the Heart Valve Possess Characteristics Similar to Smooth Muscle Cells
,”
Circ. Res.
0009-7330,
59
(
3
), pp.
310
320
.
2.
Taylor
,
P. M.
,
Batten
,
P.
,
Brand
,
N. J.
,
Thomas
,
P. S.
, and
Yacoub
,
M. H.
, 2003, “
The Cardiac Valve Interstitial Cell
,”
Int. J. Biochem. Cell Biol.
1357-2725,
35
(
2
), pp.
113
118
.
3.
Latif
,
N.
,
Sarathchandra
,
P.
,
Taylor
,
P. M.
,
Antoniw
,
J.
, and
Yacoub
,
M. H.
, 2005, “
Molecules Mediating Cell-ECM and Cell-Cell Communication in Human Heart Valves
,”
Cell Biochem. Biophys.
1085-9195,
43
(
2
), pp.
275
287
.
4.
Latif
,
N.
,
Sarathchandra
,
P.
,
Taylor
,
P. M.
,
Antoniw
,
J.
,
Brand
,
N.
, and
Yacoub
,
M. H.
, 2006, “
Characterization of Molecules Mediating Cell-Cell Communication in Human Cardiac Valve Interstitial Cells
,”
Cell Biochem. Biophys.
1085-9195,
45
(
3
), pp.
255
264
.
5.
Sell
,
S.
, and
Scully
,
R. E.
, 1965, “
Aging Changes in the Aortic and Mitral Valves. Histologic and Histochemical Studies, With Observations on the Pathogenesis of Calcific Aortic Stenosis and Calcification of the Mitral Annulus
,”
Am. J. Pathol.
0002-9440,
46
,
345
365
.
6.
Merryman
,
W. D.
,
Youn
,
I.
,
Lukoff
,
H. D.
,
Krueger
,
P. M.
,
Guilak
,
F.
,
Hopkins
,
R. A.
, and
Sacks
,
M. S.
, 2006, “
Correlation Between Heart Valve Interstitial Cell Stiffness and Transvalvular Pressure: Implications for Collagen Biosynthesis
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
290
(
1
), pp.
H224
H231
.
7.
Chester
,
A. H.
,
Kershaw
,
J. D. B.
,
Misfeld
,
M.
,
Sievers
,
H.-H.
, and
Yacoub
,
M. H.
, 2003, “
Specific Regional and Directional Contractile Response of Aortic Cusp Tissue-Relevance to Valve Function
,”
Second Biennial Meeting of the Society for Heart Valve Disease
.
8.
Li
,
S.
,
Van Den Diepstraten
,
C.
,
D’Souza
,
S. J.
,
Chan
,
B. M.
, and
Pickering
,
J. G.
, 2003, “
Vascular Smooth Muscle Cells Orchestrate the Assembly of Type I Collagen Via Alpha2beta1 Integrin, RhoA, and Fibronectin Polymerization
,”
Am. J. Pathol.
0002-9440,
163
(
3
), pp.
1045
1056
.
9.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
, 1998, “
The Aortic Valve Microstructure: Effects of Transvalvular Pressure
,”
J. Biomed. Mater. Res.
0021-9304,
41
(
1
), pp.
131
141
.
10.
Stella
,
J. A.
, and
Sacks
,
M. S.
, 2007, “
On the Biaxial Mechanical Properties of the Layers of the Aortic Valve Leaflet
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
5
), pp.
757
766
.
11.
Vesely
,
I.
, and
Noseworthy
,
R.
, 1992, “
Micromechanics of the Fibrosa and the Ventricularis in Aortic Valve Leaflets
,”
J. Mol. Biol.
0022-2836,
25
(
1
), pp.
101
113
.
12.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
, 1997, “
ASmall Angle Light Scattering Device for Planar Connective Tissue Microstructural Analysis
,”
Ann. Biomed. Eng.
0090-6964,
25
(
4
), pp.
678
689
.
13.
Sacks
,
M. S.
, 2004, “
Small-Angle Light Scattering Methods for Soft Connective Tissue Structural Analysis
,” An invited chapter for the
Encyclopedia of Biomaterials and Biomedical Engineering
,
G. E.
Wnek
and
G.
Bowlin
, eds.,
Marcel Dekker, Inc.
,
New York
.
14.
Gloeckner
,
D. C.
, 2003,
Tissue Biomechanics of the Urinary Bladder Wall
,
University of Pittsburgh
,
Pittsburgh
, p.
258
.
15.
Engelmayr
,
G. C.
, Jr.
,
Rabkin
,
E.
,
Sutherland
,
F. W.
,
Schoen
,
F. J.
,
Mayer
,
J. E.
, Jr.
, and
Sacks
,
M. S.
, 2005, “
The Independent Role of Cyclic Flexure in the Early In Vitro Development of an Engineered Heart Valve Tissue
,”
Biomaterials
0142-9612,
26
(
2
), pp.
175
187
.
16.
Huang
,
H. Y. S.
, 2004, “
Micromechanical Simulations of Heart Valve Tissues
,”
Mechanical Engineering
,
University of Pittsburgh
, Pittsburgh, p.
258
.
17.
Sugimoto
,
B.
, 2003, “
Effects of Leaflet Stiffness on the Dynamic Motion of the Aortic Heart Valve
,” Master thesis, University of Pittsburgh.
18.
Mayne
,
A. S.
,
Christie
,
G. W.
,
Smaill
,
B. H.
,
Hunter
,
P. J.
, and
Barratt-Boyes
,
B. G.
, 1989, “
An Assessment of the Mechanical Properties of Leaflets From Four Second-Generation Porcine Bioprostheses With Biaxial Testing Techniques
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
98
(
2
), pp.
170
180
(see comments).
19.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part I: Experimental Results
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
1
), pp.
23
30
.
20.
Kanit
,
T.
,
Forest
,
S.
, and
Galliet
,
I.
, 2003, “
Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
3647
3679
.
21.
Kouznetsova
,
V.
,
Brekelmans
,
W. A. M.
, and
Baaijens
,
F. P. T.
, 2001, “
An Approach to Micro-Macro Modeling of Heterogeneous Materials
,”
Arch. Technol.
1361-326X,
27
(
1
), pp.
37
48
.
22.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
4
), pp.
327
335
.
23.
Schmidt
,
D.
, and
Sacks
,
M. S.
, 1998, “
A Finite Element Implementation of a Structural Constitutive Model for Heart Valve Tissues for Generalized Deformation
,”
J. Biomech.
0021-9290, submitted.
24.
Theret
,
D. P.
,
Levesque
,
M. J.
,
Sato
,
M.
,
Nerem
,
R. M.
, and
Wheeler
,
L. T.
, 1988, “
The Application of a Homogeneous Half-Space Model in the Analysis of Endothelial Cell Micropipette Measurements
,”
ASME J. Biomech. Eng.
0148-0731,
110
(
3
), pp.
190
199
.
25.
Baer
,
A. E.
,
Laursen
,
T. A.
,
Guilak
,
F.
, and
Setton
,
L. A.
, 2003, “
The Micromechanical Environment of Intervertebral Disc Cells Determined by a Finite Deformation, Anisotropic, and Biphasic Finite Element Model
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
1
), pp.
1
11
.
26.
Baer
,
A. E.
, and
Setton
,
L. A.
, 2000, “
The Micromechanical Environment of Intervertebral Disc Cells: Effect of Matrix Anisotropy and Cell Geometry Predicted by a Linear Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
3
), pp.
245
251
.
27.
Liao
,
J.
, and
Vesely
,
I.
, 2003, “
A Structural Basis for the Size-Related Mechanical Properties of Mitral Valve Chordae Tendineae
,”
J. Biomech.
0021-9290,
36
(
8
), pp.
1125
1133
.
28.
Knight
,
M. M.
,
Ross
,
J. M.
,
Sherwin
,
A. F.
,
Lee
,
D. A.
,
Bader
,
D. L.
, and
Poole
,
C. A.
, 2001, “
Chondrocyte Deformation Within Mechanically and Enzymatically Extracted Chondrons Compressed in Agarose
,”
Biochim. Biophys. Acta
0006-3002,
1526
(
2
), pp.
141
146
.
29.
Peeters
,
E. A.
,
Bouten
,
C. V.
,
Oomens
,
C. W.
,
Bader
,
D. L.
,
Snoeckx
,
L. H.
, and
Baaijens
,
F. P.
, 2004, “
Anisotropic, Three-Dimensional Deformation of Single Attached Cells Under Compression
,”
Ann. Biomed. Eng.
0090-6964,
32
(
10
), pp.
1443
1452
.
30.
Screen
,
H. R.
,
Lee
,
D. A.
,
Bader
,
D. L.
, and
Shelton
,
J. C.
, 2003, “
Development of a Technique to Determine Strains in Tendons Using the Cell Nuclei
,”
Biorheology
0006-355X,
40
(
1–3
), pp.
361
368
.
31.
Merryman
,
W. D.
,
Huang
,
H. Y.
,
Schoen
,
F. J.
, and
Sacks
,
M. S.
, 2006, “
The Effects of Cellular Contraction on Aortic Valve Leaflet Flexural Stiffness
,”
J. Biomech.
0021-9290,
39
(
1
), pp.
88
96
.
32.
Chester
,
A. H.
,
Misfeld
,
M.
, and
Yacoub
,
M. H.
, 2000, “
Receptor-Mediated Contraction of Aortic Valve Leaflets
,”
J. Heart Valve Dis.
0966-8519,
9
(
2
), pp.
250
254
.
33.
Silver
,
F. H.
,
Kato
,
Y. P.
,
Ohno
,
M.
, and
Wasserman
,
A. J.
, 1992, “
Analysis of Mammalian Connective Tissue: Relationship Between Hierarchical Structures and Mechanical Properties
,”
J. Long Term Eff. Med. Implants
,
2
(
2–3
), pp.
165
198
.
34.
Cowin
,
S. C.
, 2000, “
How is a Tissue Built?
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
6
), pp.
553
569
.
35.
Schoen
,
F.
, 1997, “
Aortic Valve Structure-Function Correlations: Role of Elastic Fibers No Longer a Stretch of the Imagination
,”
J. Heart Valve Dis.
0966-8519,
6
,
1
6
.
36.
Hilbert
,
S. L.
,
Sword
,
L. C.
,
Batchelder
,
K. F.
,
Barrick
,
M. K.
, and
Ferrans
,
V. J.
, 1996, “
Simultaneous Assessment of Bioprosthetic Heart Valve Biomechanical Properties and Collagen Crimp Length
,”
J. Biomed. Mater. Res.
0021-9304,
31
(
4
), pp.
503
509
.
37.
Scott
,
M. J.
, and
Vesely
,
I.
, 1996, “
Morphology of Porcine Aortic Valve Cusp Elastin
,”
J. Heart Valve Dis.
0966-8519,
5
(
5
), pp.
464
471
.
38.
Merryman
,
W. D.
,
Huang
H.-Y. S.
,
Schoen
,
F. J.
, and
Sacks
,
M. S.
, 2006, “
The Effects of Cellular Contraction on Aortic Valve Leaflet Flexural Stiffness
,”
J. Biomech.
0021-9290,
39
(
1
), pp.
88
96
.
39.
Merryman
,
W. D.
,
Liao
,
J.
,
Parekh
,
A.
,
Candiello
,
J. E.
,
Lin
,
H.
, and
Sacks
,
M. S.
, 2000, “
Differences in Tissue Remodeling Potential of the Aortic and Pulmonary Heart Valve Interstitial Cells
,”
Tissue Eng.
1076-3279,
13
(
9
), pp.
2281
2290
.
40.
Guilak
,
F.
,
Tedrow
,
J. R.
, and
Burgkart
,
R.
, 2000, “
Viscoelastic Properties of the Cell Nucleus
,”
Biochem. Biophys. Res. Commun.
0006-291X,
269
(
3
), pp.
781
786
.
41.
Caille
,
N.
,
Thoumine
,
O.
,
Tardy
,
Y.
, and
Meister
,
J. J.
, 2002, “
Contribution of the Nucleus to the Mechanical Properties of Endothelial Cells
,”
J. Biomech.
0021-9290,
35
(
2
), pp.
177
187
.
42.
Lei
,
M.
,
Ghezzo
,
H.
,
Chen
,
M. F.
, and
Eidelman
,
D. H.
, 1997, “
Airway Smooth Muscle Orientation in Intraparenchymal Airways
,”
J. Appl. Physiol.
8750-7587,
82
(
1
), pp.
70
77
.
43.
Skaer
,
R. J.
, and
Whytock
,
S.
, 1976, “
The Fixation of Nuclei and Chromosomes
,”
J. Cell. Sci.
0021-9533,
20
(
1
), pp.
221
231
.
44.
Blanc
,
A.
,
Tran-Khanh
,
N.
,
Filion
,
D.
, and
Buschmann
,
M. D.
, 2005, “
Optimal Processing Method to Obtain Four-Color Confocal Fluorescent Images of the Cytoskeleton and Nucleus in Three-Dimensional Chondrocyte Cultures
,”
J. Histochem. Cytochem.
0022-1554,
53
(
9
), pp.
1171
1175
.
45.
Sutherland
,
F. W.
,
Perry
,
T. E.
,
Yu
,
Y.
,
Sherwood
,
M. C.
,
Rabkin
,
E.
,
Masuda
,
Y.
,
Garcia
,
G. A.
,
McLellan
,
D. L.
,
Engelmayr
,
G. C.
, Jr.
,
Sacks
,
M. S.
,
Schoen
,
F. J.
, and
Mayer
,
J. E.
, Jr.
, 2005, “
From Stem Cells to Viable Autologous Semilunar Heart Valve
,”
Circulation
0009-7322,
111
(
21
), pp.
2783
2791
.
46.
Engelmayr
,
G. C.
, Jr.
,
Sales
,
V. L.
,
Mayer
,
J. E.
, Jr.
, and
Sacks
,
M. S.
, 2006, “
Cyclic Flexure and Laminar Flow Synergistically Accelerate Mesenchymal Stem Cell-Mediated Engineered Tissue Formation: Implications for Engineered Heart Valve Tissues
,”
Biomaterials
0142-9612,
27
(
36
), pp.
6083
6095
.
47.
Liao
,
J.
,
Hong
,
Y.
,
Merryman
,
W. D.
,
Papworth
,
G. D.
,
Wagner
,
W. R.
, and
Sacks
,
M. S.
, 2007, “
Cellular Deformations in Micro-Integrated Elastomeric Electrospun Scaffolds Under Biaxial Stretch
,”
2007 Society for Biomaterials Annual Meeting
, Chicago.
48.
Iyengar
,
A. K. S.
,
Sugimoto
,
H.
,
Smith
,
D. B.
, and
Sacks
,
M. S.
, 2001, “
Dynamic In Vitro Quantification of Bioprosthetic Heart Valve Leaflet Motion Using Structured Light Projection
,”
Ann. Biomed. Eng.
0090-6964,
29
(
11
), pp.
963
973
.
You do not currently have access to this content.