The objective of this study was to determine how in vitro mechanical stimulation of tissue engineered constructs affects their stiffness and modulus in culture and tendon repair biomechanics 12weeks after surgical implantation. Using six female adult New Zealand White rabbits, autogenous tissue engineered constructs were created by seeding mesenchymal stem cells (0.1×106cellsml) in collagen gel (2.6mgml) and combining both with a collagen sponge. Employing a novel experimental design strategy, four constructs from each animal were mechanically stimulated (one 1Hzcycle every 5min to 2.4% peak strain for 8hday for 2weeks) while the other four remained unstretched during the 2week culture period. At the end of incubation, three of the mechanically stimulated (S) and three of the nonstimulated (NS) constructs from each animal were assigned for in vitro mechanical testing while the other two autogenous constructs were implanted into bilateral full-thickness, full-length defects created in the central third of rabbit patellar tendons (PTs). No significant differences were found in the in vitro linear stiffnesses between the S (0.15±0.1Nmm) and NS constructs (0.08±0.02Nmm; mean±SD). However, in vitro mechanical stimulation significantly increased the structural and material properties of the repair tissue, including a 14% increase in maximum force (p=0.01), a 50% increase in linear stiffness (p=0.001), and 23–41% increases in maximum stress and modulus (p=0.01). The S repairs achieved 65%, 80%, 60%, and 40% of normal central PT maximum force, linear stiffness, maximum stress, and linear modulus, respectively. The results for the S constructs exceed values obtained previously by our group using the same animal and defect model, and to our knowledge, this is the first study to show the benefits of in vitro mechanical stimulation on tendon repair biomechanics. In addition, the linear stiffnesses for the construct and repair were positively correlated (r=0.56) as were their linear moduli (r=0.68). Such in vitro predictors of in vivo outcome hold the potential to speed the development of tissue engineered products by reducing the time and costs of in vivo studies.

1.
Aulicino
,
P. L.
, 1995, “
Acute Injuries of the Extensor Tendons Proximal to the Metacarpophalangeal Joints
,”
Hand Clin.
0749-0712,
11
(
3
), pp.
403
410
.
2.
Bjorkenheim
,
J. M.
,
Paavolainen
,
P.
,
Ahovuo
,
J.
, and
Slatis
,
P.
, 1990, “
Resistance of a Defect of the Supraspinatus Tendon to Intraarticular Hydrodynamic Pressure—An Experimental-Study on Rabbits
,”
J. Orthop. Res.
0736-0266,
8
(
2
), pp.
175
179
.
3.
Blair
,
W. F.
, and
Steyers
,
C. M.
, 1992, “
Extensor Tendon Injuries
,”
Orthop. Clin. North Am.
0030-5898,
23
(
1
), pp.
141
148
.
4.
Butler
,
D.
, 1989, “
Kappa Delta Award Paper. Anterior Cruciate Ligament: Its Normal Response and Replacement
,”
J. Orthop. Res.
0736-0266,
7
, pp.
910
921
.
5.
Dawson
,
W. J.
, 1994, “
The Spectrum of Sports-Related Interphalangeal Joint Injuries
,”
Hand Clin.
0749-0712,
10
(
2
), pp.
315
326
.
6.
Elliot
,
D.
,
Moiemen
,
N. S.
,
Flemming
,
A. F. S.
,
Harris
,
S. B.
, and
Foster
,
A. J.
, 1994, “
The Rupture Rate of Acute Flexor Tendon Repairs Mobilized by the Controlled Active Motion Regimen
,”
J. Hand Surg. [Br]
0266-7681,
19B
(
5
), pp.
607
612
.
7.
Gelb
,
R. I.
, 1995, “
Tendon Transfer for Rupture of the Extensor Pollicis Longus
,”
Hand Clin.
0749-0712,
11
(
3
), pp.
411
422
.
8.
Leppilahti
,
J.
, and
Orava
,
S.
, 1998, “
Total Achilles Tendon Rupture—A Review
,”
Sports Med.
0112-1642,
25
(
2
), pp.
79
100
.
9.
Ferretti
,
A.
,
Conteduca
,
F.
,
Camerucci
,
E.
, and
Morelli
,
F.
, 2002, “
Patellar Tendinosis: A Follow-Up Study of Surgical Treatment
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
84-A
(
12
), pp.
2179
2185
.
10.
Kartus
,
J.
,
Lindahl
,
S.
,
Kohler
,
K.
,
Sernert
,
N.
,
Eriksson
,
B. I.
, and
Karlsson
,
J.
, 1999, “
Serial Magnetic Resonance Imaging of the Donor Site After Harvesting the Central Third of the Patellar Tendon. A Prospective Study of 37 Patients After Arthroscopic Anterior Cruciate Ligament Reconstruction
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
7
(
1
), pp.
20
24
.
11.
Leppilahti
,
J.
,
Siira
,
P.
,
Vanharanta
,
H.
, and
Orava
,
S.
, 1996, “
Isokinetic Evaluation of Calf Muscle Performance After Achilles Rupture Repair
,”
Int. J. Sports Med.
0172-4622,
17
(
8
), pp.
619
623
.
12.
Marder
,
R. A.
, and
Timmerman
,
L. A.
, 1999, “
Primary Repair of Patellar Tendon Rupture Without Augmentation
,”
Am. J. Sports Med.
0363-5465,
27
(
3
), pp.
304
307
.
13.
Paavola
,
M.
,
Kannus
,
P.
,
Paakkala
,
T.
,
Pasanen
,
M.
, and
Jarvinen
,
M.
, 2000, “
Long-Term Prognosis of Patients With Achilles Tendinopathy. An Observational 8-Year Follow-Up Study
,”
Am. J. Sports Med.
0363-5465,
28
(
5
), pp.
634
642
.
14.
Kvist
,
M.
, 1994, “
Achilles-Tendon Injuries in Athletes
,”
Sports Med.
0112-1642,
18
(
3
), pp.
173
201
.
15.
Rupp
,
S.
,
Tempelhof
,
S.
, and
Fritsch
,
E.
, 1995, “
Ultrasound of the Achilles-Tendon After Surgical Repair-Morphology and Function
,”
Br. J. Radiol.
0007-1285,
68
(
809
), pp.
454
458
.
16.
Kuwada
,
G. T.
, 1995, “
Diagnosis and Treatment of Achilles Tendon Rupture
,”
Clin. Podiatr Med. Surg.
0891-8422,
12
(
4
), pp.
633
652
.
17.
Bonamo
,
J. J.
,
Krinick
,
R. M.
, and
Sporn
,
A. A.
, 1984, “
Rupture of the Patellar Ligament After Use of Its Central 3rd for Anterior Cruciate Reconstruction—A Report of 2 Cases
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
66A
(
8
), pp.
1294
1297
.
18.
Ouyang
,
H. W.
,
Goh
,
J. C. H.
,
Thambyah
,
A.
,
Teoh
,
S. H.
, and
Lee
,
E. H.
, 2003, “
Knitted Poly-Lactide-co-Glycolide Scaffold Loaded With Bone Marrow Stromal Cells in Repair and Regeneration of Rabbit Achilles Tendon
,”
Tissue Eng.
1076-3279,
9
(
3
), pp.
431
439
.
19.
Young
,
R. G.
,
Butler
,
D. L.
,
Weber
,
W.
,
Caplan
,
A. I.
,
Gordon
,
S. L.
, and
Fink
,
D. J.
, 1998, “
Use of Mesenchymal Stem Cells in a Collagen Matrix for Achilles Tendon Repair
,”
J. Orthop. Res.
0736-0266,
16
(
4
), pp.
406
413
.
20.
Awad
,
H. A.
,
Boivin
,
G. P.
,
Dressler
,
M. R.
,
Smith
,
F. N. L.
,
Young
,
R. G.
, and
Butler
,
D. L.
, 2003, “
Repair of Patellar Tendon Injuries Using a Cell-Collagen Composite
,”
J. Orthop. Res.
0736-0266,
21
(
3
), pp.
420
431
.
21.
Butler
,
D. L.
,
Goldstein
,
S. A.
, and
Guilak
,
F.
, 2000, “
Functional Tissue Engineering: The Role of Biomechanics
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
570
575
.
22.
Guilak
,
F.
,
Butler
,
D. L.
,
Mooney
,
D.
, and
Goldstein
,
S. A.
, 2003,
Functional Tissue Engineering
,
Springer-Verlag
,
New York
.
23.
Guilak
,
F.
,
Butler
,
D. L.
, and
Goldstein
,
S. A.
, 2001, “
Functional Tissue Engineering: The Role of Biomechanics in Articular Cartilage Repair
,”
Clin. Orthop. Relat. Res.
0009-921X,
391
, pp.
S295
S305
.
24.
Juncosa-Melvin
,
N.
,
Boivin
,
G.
,
Galloway
,
M.
,
Gooch
,
C.
,
West
,
J. R.
,
Sklenka
,
A. M.
, and
Butler
,
D. L.
, 2005, “
Effects of Cell-to-Collagen Ratio in Mesenchymal Stem Cell-Seeded Implants on Tendon Repair Biomechanics and Histology
,”
Tissue Eng.
1076-3279,
11
(
3–4
), pp.
448
457
.
25.
Juncosa
,
N.
,
West
,
J. R.
,
Galloway
,
M. T.
,
Bolvin
,
G. P.
, and
Butler
,
D. L.
, 2003, “
In Vivo Forces Used to Develop Design Parameters for Tissue Engineered Implants for Rabbit Patellar Tendon Repair
,”
J. Biomech.
0021-9290,
36
(
4
), pp.
483
488
.
26.
Altman
,
G. H.
,
Horan
,
R. L.
,
Martin
,
I.
,
Farhadi
,
J.
,
Stark
,
P. R. H.
,
Volloch
,
V.
,
Richmond
,
J. C.
,
Vunjak-Novakovic
,
G.
, and
Kaplan
,
D. L.
, 2001, “
Cell Differentiation by Mechanical Stress
,”
FASEB J.
0892-6638,
15
(
14
), pp.
U99
U111
.
27.
Garvin
,
J.
,
Qi
,
B.
,
Maloney
,
M.
, and
Banes
,
A. J.
, 2003, “
Novel System for Engineering Bioartificial Tendons and Application of Mechanical Load
,”
Tissue Eng.
1076-3279,
9
(
5
), pp.
967
979
.
28.
Juncosa-Melvin
,
N.
,
Boivin
,
G. P.
,
Gooch
,
C.
,
Galloway
,
M. T.
,
West
,
J.
,
Dunn
,
M. G.
, and
Butler
,
D. L.
, 2006, “
The Effect of Autologous Mesenchymal Stem Cells on the Biomechanics and Histology of Gel-Collagen Sponge Constructs Used for Rabbit Patellar Tendon Repair
,”
Tissue Eng.
1076-3279,
12
(
2
), pp.
369
379
.
29.
Hung
,
C. T.
,
Mauck
,
R. L.
,
Wang
,
C. C. B.
,
Lima
,
E. G.
, and
Ateshian
,
G. A.
, 2004, “
A Paradigm for Functional Tissue Engineering of Articular Cartilage via Applied Physiologic Deformational Loading
,”
Ann. Biomed. Eng.
0090-6964,
32
(
1
), pp.
35
49
.
30.
Blevins
,
F. T.
,
Hecker
,
A. T.
,
Bigler
,
G. T.
,
Boland
,
A. L.
, and
Hayes
,
W. C.
, 1994, “
The Effects of Donor Age and Strain-Rate on the Biomechanical Properties of Bone-Patellar Tendon-Bone Allografts
,”
Am. J. Sports Med.
0363-5465,
22
(
3
), pp.
328
333
.
31.
Korvick
,
D. L.
,
Cummings
,
J. F.
,
Grood
,
E. S.
,
Holden
,
J. P.
,
Feder
,
S. M.
, and
Butler
,
D. L.
, 1996, “
The Use of an Implantable Force Transducer to Measure Patellar Tendon Forces in Goats
,”
J. Biomech.
0021-9290,
29
(
4
), pp.
557
561
.
You do not currently have access to this content.