Abstract

With the worldwide prevalence of cardiovascular diseases, much attention has been focused on simulating the characteristics of the human heart to better understand and treat cardiac disorders. The purpose of this study is to build a finite element model of the left atrium (LA) that incorporates detailed anatomical features and realistic material characteristics to investigate the interaction of heart tissue and surgical instruments. This model is used to facilitate the design of an endoscopically deployable atrial retractor for use in minimally invasive, robotically assisted mitral valve repair. Magnetic resonance imaging (MRI) scans of a pressurized explanted porcine heart were taken to provide a 3D solid model of the heart geometry, while uniaxial tensile tests of porcine left atrial tissue were conducted to obtain realistic material properties for noncontractile cardiac tissue. A finite element model of the LA was constructed using ANSYS™ Release 9.0 software and the MRI data. The Mooney–Rivlin hyperelastic material model was chosen to characterize the passive left atrial tissue; material constants were derived from tensile test data. Finite element analysis (FEA) models of a CardioVations Port Access™ retractor and a prototype endoscopic retractor were constructed to simulate interaction between each instrument and the LA. These contact simulations were used to compare the quality of retraction between the two instruments and to optimize the design of the prototype retractor. Model accuracy was verified by comparing simulated cardiac wall deflections to those measured by MRI. FEA simulations revealed that peak forces of approximately 2.85N and 2.46N were required to retract the LA using the Port Access™ and prototype retractors, respectively. These forces varied nonlinearly with retractor blade displacement. Dilation of the atrial walls and rigid body motion of the chamber were approximately the same for both retractors. Finite element analysis is shown to be an effective tool for analyzing instrument/tissue interactions and for designing surgical instruments. The benefits of this approach to medical device design are significant when compared to the alternatives: constructing prototypes and evaluating them via animal or clinical trials.

References

1.
Taylor
,
T. W.
,
Okino
,
H.
, and
Yamaguchi
,
T.
, 1994, “
Three-Dimensional Analysis of Left Ventricular Ejection Using Computational Fluid Dynamics
,”
ASME J. Biomech. Eng.
0148-0731,
116
(
2
), pp.
127
130
.
2.
Schoephoerster
,
R. T.
,
Silva
,
C. L.
, and
Ray
,
G.
, 1994, “
Evaluation of Left Ventricular Function Based on Simulated Systolic Flow Dynamics Computed From Regional Wall Motion
,”
J. Biomech.
0021-9290,
27
(
1–6
), pp.
125
136
.
3.
Peskin
,
C. J.
, 1977, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
0021-9991,
25
, pp.
220
252
.
4.
Peskin
,
C. S.
, and
McQueen
,
D. M.
, 1989, “
A Three-Dimensional Computational Method for Blood Flow in the Heart I: Immersed Elastic Fibers in a Viscous Incompressible Fluid
,”
J. Comput. Phys.
0021-9991,
81
, pp.
372
405
.
5.
Peskin
,
C. S.
, and
McQueen
,
D. M.
, 1989, “
A Three-Dimensional Computational Method for Blood Flow in the Heart II: Contractile Fibers
,”
J. Comput. Phys.
0021-9991,
82
, pp.
289
298
.
6.
Lemmon
,
J. D.
, 2000, “
Three-Dimensional Computational Model of Left Heart Diastolic Function With Fluid-Structure Interaction
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
2
), pp.
109
117
.
7.
Remme
,
E. W.
,
Hunter
,
P. J.
,
Smiseth
,
O.
,
Stevens
,
C.
,
Rabben
,
S. I.
,
Skulstad
,
H.
, and
Angelsen
,
B.
, 2004, “
Development of an In Vivo Method for Determining Material Properties of Passive Myocardium
,”
J. Biomech.
0021-9290,
37
, pp.
669
678
.
8.
Stevens
,
C.
,
Remme
,
E. W.
,
LeGrice
,
I.
, and
Hunter
,
P. J.
, 2003, “
Ventricular Mechanics in Diastole: Material Parameter Sensitivity
,”
J. Biomech.
0021-9290,
36
, pp.
737
748
.
9.
Usyk
,
T. P.
, and
McCulloch
,
A. D.
, 2003, “
Relationship Between Regional Shortening and Asynchronous Electrical Activation in a Three-Dimensional Model of Ventricular Electromechanics
,”
J. Cardiovasc. Electrophysiol.
1045-3873,
14
, pp.
S196
S202
.
10.
Holmes
,
J. W.
, 2004, “
Determinants of Left Ventricular Shape Change During Filling
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
1
), pp.
98
103
.
11.
Nash
,
M. P.
, and
Hunter
,
P. J.
, 2000, “
Computational Mechanics of the Heart: From Tissue Structure to Ventricular Function
,”
J. Elast.
0374-3535,
61
, pp.
113
141
.
12.
Costa
,
K. D.
,
May-Newman
,
K.
,
Farr
,
D.
,
O’Dell
,
W. G.
,
McCulloch
,
A. D.
, and
Omens
,
J. H.
, 1997, “
Three-Dimensional Residual Strain in Midanterior Canine Left Ventricle
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
273
(
4
), pp.
H1968
H1976
.
13.
Remme
,
E. W.
,
Augenstein
,
K. F.
,
Young
,
A. A.
, and
Hunter
,
P. J.
, 2005, “
Parameter Distribution Models for Estimation of Population Based Left Ventricular Deformation Using Sparse Fiducial Markers
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
0148-9062,
24
(
3
), pp.
381
388
.
14.
Costa
,
K. D.
,
Takayama
,
Y.
,
McCulloch
,
A. D.
, and
Covell
,
J. W.
, 1999, “
Laminar Fiber Architecture and Three-Dimensional Systolic Mechanics in Canine Ventricular Myocardium
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
276
(
45
), pp.
H595
H607
.
15.
McCulloch
,
A. D.
,
Smaill
,
B. H.
, and
Hunter
,
P. J.
, 1987, “
Left Ventricular Epicardial Deformation in Isolated Arrested Dog Heart
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
252
, pp.
H233
H241
.
16.
Omens
,
J. H.
,
May
,
K. D.
, and
McCulloch
,
A. D.
, 1991, “
Transmural Distribution of Three-Dimensional Strain in the Isolated Arrested Canine Left Ventricle
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
261
, pp.
918
928
.
17.
Duan
,
O.
,
Angelini
,
E. D.
,
Herz
,
S. L.
,
Gerard
,
O.
,
Allain
,
P.
,
Ingrassia
,
C. M.
,
Costa
,
K. D.
,
Holmes
,
J. W.
,
Homma
,
S.
, and
Laine
,
A. F.
, 2004, “
Tracking of LV Endocardial Surface on Real-Time Three-Dimensional Ultrasound With Optical Flow
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
98
), pp.
434
445
.
18.
Sun
,
W.
,
Sacks
,
M. S.
, and
Scott
,
M. J.
, 2005, “
Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
709
715
.
19.
Geest
,
J. P. V.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
, 2004, “
Age Dependency of the Biaxial Biomechanical Behavior of Human Abdominal Aorta
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
815
822
.
20.
Sun
,
W.
,
Sacks
,
M. S.
,
Sellaro
,
T. L.
, and
Slaughter
,
W. S.
, 2003, “
Biaxial Mechanical Response of Bioprosthetic Heart Valve Biomaterials to High In-Plane Shear
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
372
380
.
21.
Sacks
,
M. S.
, 2003, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
280
287
.
22.
Sun
,
W.
, and
Sacks
,
M. S.
, 2005, “
Finite Element Implementation of a Generalized Fung-Elastic Constitutive Model for Planar Soft Tissues
,”
Biomechanics and Modeling in Mechanobiology
,
4
, pp.
190
199
.
23.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
24.
Holzapfel
,
G. A.
,
Eberlein
,
R.
,
Wriggers
,
P.
, and
Weizsäcker
,
H. W.
, 1996, “
Large Strain Analysis of Soft Biological Membranes: Formulation and Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
132
, pp.
45
61
.
25.
Sacks
,
M. S.
, and
Sun
,
W.
, 2003, “
Multiaxial Mechanical Behavior of Biological Materials
,”
Annu. Rev. Biomed. Eng.
1523-9829,
5
, pp.
251
284
.
26.
Lally
,
C.
,
Reid
,
A. J.
, and
Prendergast
,
P. J.
, 2004, “
Elastic Behavior of Porcine Coronary Artery Tissue
,”
Ann. Biomed. Eng.
0090-6964,
32
(
10
), pp.
1355
1364
.
27.
Bro-Nielsen
,
M.
, and
Cotin
,
S.
, 1996, “
Real-Time Volumetric Deformable Models for Surgery Simulation Using Finite Elements and Condensation
,”
Comput. Graph. Forum
0167-7055 (Eurographics '96),
15
, pp.
C57
C66
.
28.
Kühnapfel
,
U.
,
Çakmak
,
H. K.
, and
Maaß
,
H.
, 2000, “
Endoscopic Surgery Training Using Virtual Reality and Deformable Tissue Simulation
,”
Comput. Graph.
0097-8930,
24
, pp.
671
682
.
29.
Cotin
,
S.
,
Delingette
,
H.
, and
Ayache
,
N.
, 1999, “
Real-Time Elastic Deformations of Soft Tissues for Surgery Simulation
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
5
, pp.
62
73
.
30.
Meseure
,
P.
,
Davanne
,
J.
,
Hilde
,
L.
,
Lenoir
,
J.
,
France
,
L.
,
Triquet
,
F.
, and
Chaillou
,
C.
, 2003, “
A Physically-Based Virtual Environment Dedicated to Surgical Simulation
,”
Lect. Notes Comput. Sci.
0302-9743,
2673
, pp.
38
47
.
31.
Wagner
,
C.
,
Schill
,
M. A.
, and
Manner
,
R.
, 2002, “
Collision Detection and Tissue Modeling in a VR-Simulator for Eye Surgery
,”
Eigth Eurographics Workshop on Virtual Environments
,
Barcelona, Spain
.
32.
Fung
,
Y. C.
, 1993,
Biomechanics: Properties of Living Tissues
,
Springer-Verlag
,
New York
, Chap. 10.
33.
1974, Cardiac Mechanics: Physiological, Clinical, and Mathematical Considerations
,
I.
Mirsky
,
D. N.
Ghista
, and
H.
Sandler
, eds.,
Wiley
,
New York
.
34.
Stuparu
,
M.
, 2002, “
Human Heart Valves: Hyperelastic Material Modeling
,”
Transactions on Mechanics: Tenth Conference on Mechanical Vibrations
,
Timisoara, Romania
.
35.
Daly
,
S.
,
Prendergast
,
P. J.
,
Dolan
,
F.
, and
Lee
,
T. C.
, 2000, “
Use of Finite Element Analysis to Simulate the Hyperelastic Behaviour of Cardiovascular Tissue
,”
12th Conference of the European Society of Biomechanics
,
Dublin, Ireland
.
36.
ANSYS Contact Technology Guide, ANSYS, Release 9.0, Nov. 2004, Sec. 3.5.8.1.
37.
Gong
,
X.-Y.
, and
Pelton
,
A.
, 2002, “
Finite Element Analysis on Nitinol Medical Applications
,”
Proceedings of IMECE
, Vol.
53
(
1–2
).
38.
Gray
,
H.
, 1918,
Anatomy of the Human Body
,
Lea & Febiger
,
Philadelphia
.
You do not currently have access to this content.