Falls that occur during walking are a significant health problem. One of the greatest impediments to solve this problem is that there is no single obviously “correct” way to quantify walking stability. While many people use variability as a proxy for stability, measures of variability do not quantify how the locomotor system responds to perturbations. The purpose of this study was to determine how changes in walking surface variability affect changes in both locomotor variability and stability. We modified an irreducibly simple model of walking to apply random perturbations that simulated walking over an irregular surface. Because the model’s global basin of attraction remained fixed, increasing the amplitude of the applied perturbations directly increased the risk of falling in the model. We generated ten simulations of 300 consecutive strides of walking at each of six perturbation amplitudes ranging from zero (i.e., a smooth continuous surface) up to the maximum level the model could tolerate without falling over. Orbital stability defines how a system responds to small (i.e., “local”) perturbations from one cycle to the next and was quantified by calculating the maximum Floquet multipliers for the model. Local stability defines how a system responds to similar perturbations in real time and was quantified by calculating short-term and long-term local exponential rates of divergence for the model. As perturbation amplitudes increased, no changes were seen in orbital stability (r2=2.43%; p=0.280) or long-term local instability (r2=1.0%; p=0.441). These measures essentially reflected the fact that the model never actually “fell” during any of our simulations. Conversely, the variability of the walker’s kinematics increased exponentially (r299.6%; p<0.001) and short-term local instability increased linearly (r2=88.1%; p<0.001). These measures thus predicted the increased risk of falling exhibited by the model. For all simulated conditions, the walker remained orbitally stable, while exhibiting substantial local instability. This was because very small initial perturbations diverged away from the limit cycle, while larger initial perturbations converged toward the limit cycle. These results provide insight into how these different proposed measures of walking stability are related to each other and to risk of falling.

1.
Tinetti
,
M. E.
,
Doucette
,
J.
,
Claus
,
E.
, and
Marottoli
,
R.
, 1995, “
The Contribution of Predisposing and Situational Risk Factors to Serious Fall Injuries
,”
J. Am. Geriatr. Soc.
0002-8614,
43
, pp.
1207
1213
.
2.
Berg
,
W. P.
,
Alessio
,
H. M.
,
Mills
,
E. M.
, and
Tong
,
C.
, 1997, “
Circumstances and Consequences of Falls in Independent Community-Dwelling Older Adults
,”
Age Ageing
0002-0729,
26
, pp.
261
268
.
3.
Niino
,
N.
,
Tsuzuku
,
S.
,
Ando
,
F.
, and
Shimokata
,
H.
, 2000, “
Frequencies and Circumstances of Falls in the National Institute for Longevity Sciences, Longitudinal Study of Aging (NILS-LSA)
,”
J. Epidemiol.
0917-5040,
10
, pp.
S90
S94
.
4.
Fuller
,
G. F.
, 2000, “
Falls in the Elderly
,”
Am. Fam. Physician
0002-838X,
61
, pp.
2173
2174
.
5.
Englander
,
F.
,
Hodson
,
T. J.
, and
Terregrossa
,
R. A.
, 1996, “
Economic Dimensions of Slip and Fall Injuries
,”
J. Forensic Sci.
0022-1198,
41
, pp.
733
746
.
6.
Rizzo
,
J. A.
,
Friedkin
,
R.
,
Williams
,
C. S.
,
Nabors
,
J.
,
Acampora
,
D.
, and
Tinetti
,
M. E.
, 1998, “
Health Care Utilization and Costs in a Medicare Population by Fall Status
,”
Med. Care
0025-7079,
36
, pp.
1174
1188
.
7.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 1995,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
Wiley
,
New York
.
8.
Garcia
,
M.
,
Chatterjee
,
A.
,
Ruina
,
A.
, and
Coleman
,
M.
, 1998, “
The Simplest Walking Model: Stability, Complexity, and Scaling
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
281
288
.
9.
Kuo
,
A. D.
, 1999, “
Stabilization of Lateral Motion in Passive Dynamic Walking
,”
Int. J. Robot. Res.
0278-3649,
18
, pp.
917
930
.
10.
Hurmuzlu
,
Y.
, and
Basdogan
,
C.
, 1994, “
On the Measurement of Dynamic Stability of Human Locomotion
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
30
36
.
11.
Hurmuzlu
,
Y.
,
Basdogan
,
C.
, and
Stoianovici
,
D.
, 1996, “
Kinematics and Dynamic Stability of the Locomotion of Post-Polio Patients
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
405
411
.
12.
Ashkenazy
,
Y.
,
Hausdorff
,
J. M.
,
Ivanov
,
P. C.
, and
Stanley
,
H. E.
, 2002, “
A Stochastic Model of Human Gait Dynamics
,”
Physica A
0378-4371,
316
, pp.
662
670
.
13.
West
,
B. J.
, and
Scafetta
,
N.
, 2003, “
Nonlinear Dynamical Model of Human Gait
,”
Phys. Rev. E
1063-651X,
67
, p.
051917
.
14.
Herman
,
T.
,
Giladi
,
N.
,
Gurevich
,
T.
, and
Hausdorff
,
J. M.
, 2005, “
Gait Instability and Fractal Dynamics of Older Adults With a “Cautious” Gait: Why Do Certain Older Adults Walk Fearfully?
,”
Gait and Posture
0966-6362,
21
, pp.
178
185
.
15.
Rosenstein
,
M. T.
,
Collins
,
J. J.
, and
DeLuca
,
C. J.
, 1993, “
A Practical Method for Calculating Largest Lyapunov Exponents From Small Data Sets
,”
Physica D
0167-2789,
65
, pp.
117
134
.
16.
Kantz
,
H.
, and
Schreiber
,
S.
, 2004,
Nonlinear Time Series Analysis
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
17.
Dingwell
,
J. B.
, and
Cusumano
,
J. P.
, 2000, “
Nonlinear Time Series Analysis of Normal and Pathological Human Walking
,”
Chaos
1054-1500,
10
, pp.
848
863
.
18.
Dingwell
,
J. B.
, and
Marin
,
L. C.
, 2006, “
Kinematic Variability and Local Dynamic Stability of Upper Body Motions When Walking at Different Speeds
,”
J. Biomech.
0021-9290,
39
, pp.
444
452
.
19.
Kang
,
H. G.
, and
Dingwell
,
J. B.
, 2006, “
A Direct Comparison of Local Dynamic Stability During Standing and Walking
,”
Exp. Brain Res.
0014-4819,
172
, pp.
35
48
.
20.
Ali
,
F.
, and
Menzinger
,
M.
, 1999, “
On the Local Stability of Limit Cycles
,”
Chaos
1054-1500,
9
, pp.
348
356
.
21.
Schwab
,
A. L.
, and
Wisse
,
M.
, 2001, “
Basin of Attraction of the Simplest Walking Model
,”
Proceedings of the 2001 ASME Design Engineering Technical Conferences
,
American Society for Mechanical Engineering
,
Pittsburgh, PA
, Paper No. dete01/vib-21363.
22.
Winter
,
D. A.
, 1989, “
Biomechanics of Normal and Pathological Gait: Implications for Understanding Human Locomotion Control
,”
J. Motor Behav.
0022-2895,
21
, pp.
337
355
.
23.
Maki
,
B. E.
, 1997, “
Gait Changes in Older Adults: Predictors of Falls or Indicators of Fear?
,”
J. Am. Geriatr. Soc.
0002-8614,
45
, pp.
313
320
.
24.
Hausdorff
,
J. M.
,
Rios
,
D. A.
, and
Edelberg
,
H. K.
, 2001, “
Gait Variability and Fall Risk in Community-Living Older Adults: A 1-Year Prospective Study
,”
Arch. Phys. Med. Rehabil.
0003-9993,
82
, pp.
1050
1056
.
25.
Menz
,
H. B.
,
Lord
,
S. R.
,
George
,
R. S.
, and
Fitzpatrick
,
R. C.
, 2004, “
Walking Stability and Sensorimotor Function in Older People With Diabetic Peripheral Neuropathy
,”
Arch. Phys. Med. Rehabil.
0003-9993,
85
, pp.
245
252
.
26.
Thies
,
S. B.
,
Richardson
,
J. K.
, and
Ashton-Miller
,
J. A.
, 2005, “
Effects of Surface Irregularity and Lighting on Step Variability During Gait: A Study in Healthy Young and Older Women
,”
Gait and Posture
0966-6362,
22
, pp.
26
31
.
27.
Thies
,
S. B.
,
Richardson
,
J. K.
,
DeMott
,
T.
, and
Ashton-Miller
,
J. A.
, 2005, “
Influence of an Irregular Surface and Low Light on the Step Variability of Patients With Peripheral Neuropathy During Level Gait
,”
Gait and Posture
0966-6362,
22
, pp.
40
45
.
28.
Menz
,
H. B.
,
Lord
,
S. R.
, and
Fitzpatrick
,
R. C.
, 2003, “
Acceleration Patterns of the Head and Pelvis When Walking on Level and Irregular Surfaces
,”
Gait and Posture
0966-6362,
18
, pp.
35
46
.
29.
Menz
,
H. B.
,
Lord
,
S. R.
, and
Fitzpatrick
,
R. C.
, 2003, “
Age-Related Differences in Walking Stability
,”
Age Ageing
0002-0729,
32
, pp.
137
142
.
30.
Dingwell
,
J. B.
,
Cusumano
,
J. P.
,
Sternad
,
D.
, and
Cavanagh
,
P. R.
, 2000, “
Slower Speeds in Neuropathic Patients Lead to Improved Local Dynamic Stability of Continuous Overground Walking
,”
J. Biomech.
0021-9290,
33
, pp.
1269
1277
.
31.
Dingwell
,
J. B.
,
Cusumano
,
J. P.
,
Sternad
,
D.
, and
Cavanagh
,
P. R.
, 2001, “
Local Dynamic Stability Versus Kinematic Variability of Continuous Overground and Treadmill Walking
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
27
32
.
32.
Winter
,
D. A.
, 1983, “
Biomechanical Motor Patterns in Normal Walking
,”
J. Motor Behav.
0022-2895,
15
, pp.
302
330
.
33.
Öberg
,
T.
,
Karsznia
,
A.
, and
Öberg
,
K.
, 1993, “
Basic Gait Parameters: Reference Data for Normal Subjects, 10–79Years of Age
,”
J. Rehabil. Res. Dev.
0748-7711,
30
, pp.
210
223
.
34.
Kuo
,
A. D.
, 2002, “
Energetics of Actively Powered Locomotion Using the Simplest Walking Model
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
113
120
.
35.
McGeer
,
T.
, 1990, “
Passive Dynamic Walking
,”
Int. J. Robot. Res.
0278-3649,
9
, pp.
68
82
.
36.
McGeer
,
T.
, 1993, “
Dynamics and Control of Bipedal Locomotion
,”
J. Theor. Biol.
0022-5193,
163
, pp.
277
314
.
37.
Goswami
,
A.
,
Espiau
,
B.
, and
Keramane
,
A.
, 1997, “
Limit Cycles in a Passive Compass Gait Biped and Passivity-Mimicking Control Laws
,”
Auton. Rob.
0929-5593,
4
, pp.
273
286
.
38.
Kuo
,
A. D.
,
Donelan
,
J. M.
, and
Ruina
,
A.
, 2005, “
Energetic Consequences of Walking Like an Inverted Pendulum: Step-to-Step Transitions
,”
Exercise Sport Sci. Rev.
0091-6331,
33
, pp.
88
97
.
39.
Bauby
,
C. E.
, and
Kuo
,
A. D.
, 2000, “
Active Control of Lateral Balance in Human Walking
,”
J. Biomech.
0021-9290,
33
, pp.
1433
1440
.
40.
Donelan
,
J. M.
,
Shipman
,
D. W.
,
Kram
,
R.
, and
Kuo
,
A. D.
, 2004, “
Mechanical and Metabolic Requirements for Active Lateral Stabilization in Human Walking
,”
J. Biomech.
0021-9290,
37
, pp.
827
835
.
41.
Collins
,
S. H.
,
Ruina
,
A.
,
Tedrake
,
R.
, and
Wisse
,
M.
, 2005, “
Efficient Bipedal Robots Based on Passive-Dynamic Walkers
,”
Science
0036-8075,
307
, pp.
1082
1085
.
42.
Wisse
,
M.
,
Schwab
,
A. L.
, and
van der Helm
,
F. C. T.
, 2004, “
Passive Dynamic Walking Model With Upper Body
,”
Robotica
0263-5747,
22
, pp.
681
688
.
43.
Wisse
,
M.
,
Schwab
,
A. L.
,
van der Linde
,
R. Q.
, and
van der Helm
,
F. C. T.
, 2005, “
How to Keep From Falling Forward: Elementary Swing Leg Action for Passive Dynamic Walkers
,”
IEEE Trans. Rob.
,
21
, pp.
393
401
.
44.
Goswami
,
A.
,
Thuilot
,
B.
, and
Espiau
,
B.
, 1998, “
A Study of the Passive Gait of a Compass-Like Biped Robot: Symmetry and Chaos
,”
Int. J. Robot. Res.
0278-3649,
17
, pp.
1282
1301
.
45.
Wagner
,
H.
, and
Blickhan
,
R.
, 2003, “
Stabilizing Function of Antagonistic Neuromusculoskeletal Systems: An Analytical Investigation
,”
Biol. Cybern.
0340-1200,
89
, pp.
71
79
.
46.
Timmer
,
J.
,
Häussler
,
S.
,
Lauk
,
M.
, and
Lücking
,
C.-H.
, 2000, “
Pathological Tremors: Deterministic Chaos or Nonlinear Stochastic Oscillators?
,”
Chaos
1054-1500,
10
, pp.
278
288
.
47.
Tinetti
,
M. E.
,
Doucette
,
J.
,
Claus
,
E.
, and
Marottoli
,
R.
, 1995, “
Risk Factors for Serious Injury During Falls by Older Persons in the Community
,”
J. Am. Geriatr. Soc.
0002-8614,
43
, pp.
1214
1221
.
48.
Byl
,
K.
, and
Tedrake
,
R.
, 2006, “
Stability of Passive Dynamic Walking on Uneven terrain
,”
Proceedings of the Dynamic Walking 2006 Conference
,
Kuo
,
A. D.
, ed.,
Ann Arbor, MI
.
49.
Kuo
,
A. D.
, 2001, “
A Simple Model of Bipedal Walking Predicts the Preferred Speed-Step Length Relationship
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
264
269
.
50.
Gates
,
D. H.
,
Su
,
J. L.
, and
Dingwell
,
J. B.
, 2007, “
Possible Biomechanical Origins of the Long-Range Correlations in Stride Intervals of Walking
,”
Physica A
0378-4371,
380
, pp.
259
270
.
51.
Dingwell
,
J. B.
, and
Kang
,
H. G.
, 2007, “
Differences Between Local and Orbital Dynamic Stability During Human Walking
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
586
593
.
52.
Dingwell
,
J. B.
,
Kang
,
H. G.
, and
Marin
,
L. C.
, 2007, “
The Effects of Sensory Loss and Walking Speed on the Orbital Dynamic Stability of Human Walking
,”
J. Biomech.
0021-9290,
40
, pp.
1723
1730
.
53.
Owings
,
T. M.
, and
Grabiner
,
M. D.
, 2004, “
Step Width Variability, but not Step Length Variability or Step Time Variability, Discriminates Gait of Healthy Young and Older Adults During Treadmill Locomotion
,”
J. Biomech.
0021-9290,
37
, pp.
935
938
.
54.
Moe-Nilssen
,
R.
, and
Helbostad
,
J. L.
, 2005, “
Interstride Trunk Acceleration Variability but not Step Width Variability can Differentiate Between Fit and Frail Older Adults
,”
Gait and Posture
0966-6362,
21
, pp.
164
170
.
You do not currently have access to this content.