Finite Element (FE) models for the simulation of intact and implanted bone find their main purpose in accurately reproducing the associated mechanical behavior. FE models can be used for preclinical testing of joint replacement implants, where some biomechanical aspects are difficult, if not possible, to simulate and investigate in vitro. To predict mechanical failure or damage, the models should accurately predict stresses and strains. Commercially available synthetic femur models have been extensively used to validate finite element models, but despite the vast literature available on the characteristics of synthetic tibia, numerical and experimental validation of the intact and implant assemblies of tibia are very limited or lacking. In the current study, four FE models of synthetic tibia, intact and reconstructed, were compared against experimental bone strain data, and an overall agreement within 10% between experimental and FE strains was obtained. Finite element and experimental (strain gauge) models of intact and implanted synthetic tibia were validated based on the comparison of cortex bone strains. The study also includes the analysis carried out on standard tibial components with cemented and noncemented stems of the P.F.C Sigma Modular Knee System. The overall agreement within 10% previously established was achieved, indicating that FE models could be successfully validated. The obtained results include a statistical analysis where the root-mean-square-error values were always <10%. FE models can successfully reproduce bone strains under most relevant acting loads upon the condylar surface of the tibia. Moreover, FE models, once properly validated, can be used for preclinical testing of tibial knee replacement, including misalignment of the implants in the proximal tibia after surgery, simulation of long-term failure according to the damage accumulation failure scenario, and other related biomechanical aspects.

1.
Viceconti
,
M.
,
Cristofolini
,
L.
,
Baleani
,
M.
, and
Toni
,
A.
, 2001, “
Pre-Clinical Validation of a New Partially Cemented Femoral Prosthesis by Synergetic Use of Numerical and Experimental Methods
,”
J. Biomech.
0021-9290,
34
, pp.
723
731
.
2.
Gruen
,
T. A.
,
McNeice
,
G. M.
, and
Amstutz
,
H. C.
, 1979, “
Modes of Failure of Cemented Stem-Type Femoral Components: A Radiographic Analysis of Loosening
,”
Clin. Orthop. Relat. Res.
0009-921X,
141
, pp.
17
21
.
3.
NIH
, 1982,
NIH: Total Hip Joint Replacement
, NIH Consens Statement 4, pp.
1
11
.
4.
Verdonschot
,
N.
, and
Huiskes
,
R.
, 1997, “
The Effects of Cement-Stem Debonding in THA on the Long-Term Failure Probability of Cement
,”
J. Biomech.
0021-9290,
30
, pp.
795
802
.
5.
Prendergast
,
P. J.
, 1997, “
Finite Element Models in Tissue Mechanics and Orthopaedic Implant Design
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
12
(
6
), pp.
343
366
.
6.
Huikes
,
R
, 1995, “
The Law of Adaptive Bone Remodelling: A Case for Crying Newton?
Bone Structure and Remodelling
,
Odgaaard
,
A.
,
Weinans
,
H.
, eds.,
World Scientific
, Singapore.
7.
Heiner
,
A. D.
, and
Brown
,
T. D.
, 2001, “
Structural Properties of New Design of Composite Replicate Femurs and Tibias
,”
J. Biomech.
0021-9290,
34
, pp.
773
781
.
8.
Cristofolini
,
L.
,
Bini
,
S.
, and
Toni
,
A.
, 1998, “
In Vitro Testing of a Novel Limb Salvage Prosthesis for the Distal Femur
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
13
, pp.
608
615
.
9.
Cristofolini
,
L.
, and
Viceconti
,
M.
, 1997, “
Comparison of Uniaxial and Triaxial Strain Gauge Gages for Strain Measurement in the Femur
,”
Exp. Mech.
0014-4851,
37
(
3
), pp.
350
354
.
10.
Maher
,
S. A.
, and
Prendergast
,
P. J.
, 2001, “
Measurement of the Migration of a Cemented Hip Prosthesis in an In Vitro Test
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
26
(
4
), pp.
307
314
.
11.
Dias Rodrigues
,
J. F.
,
Lopes
,
H.
, and
Simões
,
J. A.
, 2004, “
Experimental Model Analysis of a Composite Composite Femur
,”
Exp. Mech.
0014-4851,
44
(
1
), pp.
29
32
.
13.
Waide
,
V.
,
Cristofolini
,
L.
,
Stolk
,
J.
,
Verdonschot
,
N.
, and
Toni
,
A.
, 2003, “
Experimental Investigation of Bone Remodeling Using Composite Femurs
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
18
(
6
), pp.
523
536
.
14.
Kassi
,
J. P.
,
Heller
,
M. O.
,
Stoeckl
,
U.
,
Perka
,
C.
, and
Duda
,
G. N.
, 2005, “
Stair Climbing is More Critical Than Walking in Pre-Clinical Assessment of Primary Stability in Cementless THA In Vitro
,”
J. Biomech.
0021-9290,
38
(
5
), pp.
1143
1154
.
15.
Martelli
,
S.
,
Taddei
,
F.
,
Varini
,
E.
,
Cristofolini
,
L.
,
Gill
,
H. S.
, and
Viceconti
,
M.
, 2005, “
Accuracy of Subject-Specific Finite Element Models of Long Model From CT Data: An In-Vitro Study
.” II Int Conf on Comput Bioengineering, Lisbon, 251.
16.
Simões
,
J. A.
,
Vaz
,
M. A.
,
Blatcher
,
S.
, and
Taylor
,
M.
, 2001, “
Influence of Head Constraint and Muscle Forces on the Strain Distribution Within the Intact Femur
,”
Med. Eng. Phys.
1350-4533,
22
(
7
), pp.
453
459
.
17.
Stolk
,
J.
,
Verdonschot
,
N.
,
Cristofolini
,
L.
,
Firmati
,
L.
,
Toni
,
A.
, and
Huiskes
,
R.
, 2000, “
Strains in a Composite Hip Joint Reconstruction Obtained Through FEA and Experiments Correspond Closely
,” Trans of the 46th Annual Meeting of the Orthop Res Soc, O515.
18.
Szivek
,
J. A.
, and
Gealer
,
R. L.
, 1991, “
Comparison of the Deformation Response of Composite and Cadaveric Femora During Simulated One Legged Stance
,”
J. Appl. Biomater
1045-4861,
2
(
4
), pp.
277
280
.
19.
Cristofolini
,
L.
, and
Viceconti
,
M.
, 2000, “
Mechanical Validation of Whole Bone Composite Tibia Models
,”
J. Biomech.
0021-9290,
33
, pp.
279
288
.
20.
Cristofolini
,
L.
, 1997, “
A Critical Analysis of Stress Shielding Evaluation of Hip Prostheses
,”
Crit. Rev. Biomed. Eng.
0278-940X,
25
, pp.
409
483
.
21.
Ruff
,
C. B.
, and
Hayes
,
W. C.
, 1983, “
Cross-Section Geometry of Pecos Pueblo Femora and Tibiae—A Biomechanical Investigation: 1. Methods and General Patterns of Variation
,”
Am. J. Phys. Anthropol.
0002-9483,
60
, pp.
359
381
.
22.
Finlay
,
J. B.
,
Bourne
,
R. B.
, and
McLeant
,
J.
, 1982, “
A Technique for In Vitro Measurement of Principal Strains in the Human Tibia
,”
J. Biomech.
0021-9290,
15
(
10
), pp.
723
739
.
23.
Cristofolini
,
L.
,
Viceconti
,
M.
,
Cappelo
,
A.
, and
Toni
,
A.
, 1996, “
Mechanical Validation of Whole Bone Composite Femur Models
,”
J. Biomech.
0021-9290,
29
(
4
), pp.
525
535
.
24.
Morrison
,
J. B.
, 1970, “
The Mechanics of the Knee Joint in Relation to Normal Walking
,”
J. Biomech.
0021-9290,
3
,
51
61
.
25.
Harrington
,
I. J.
, 1976, “
A Bioengineering Analysis of Force Actions at the Knee in Normal and Pathological Gait
,”
Biomed. Eng.
0006-2898,
11
, pp.
167
172
.
26.
Stolk
,
J.
,
Verdonschot
,
N.
, and
Huiskes
,
R.
, 1998, “
Sensitivity of Failure Criteria of Cemented Total Hip Replacements to Finite Element Mesh Density
,”
J. Biomech.
0021-9290,
15
, p.
165
.
27.
Kleemann
,
R.
,
Heller
,
M. O. W.
,
Taylor
,
W. R.
, and
Duda
,
G. N.
, 2002, “
Femoral Strains and Cement Stresses Increase With Anteversion and Prosthesis Offset in THA
,”
Proc. of 13th Conf of Eur Soc of Biomech
, Poland, pp.
223
225
.
28.
Mann
,
K. A.
,
Bartel
,
D. L.
,
Wright
,
T. M.
, and
Ingraffe
,
A. R.
, 1991, “
Mechanical Characteristics of the Stem-Cement Interface
,”
J. Orthop. Res.
0736-0266,
9
, pp.
798
808
.
29.
Shirazi-Adl
,
A.
,
Dammak
,
M.
, and
Paiement
,
G.
, 1993, “
Experimental Determination of Friction Characteristics at the Trabecular Bone/Porous-Coated Metal Interface in Cementless Implants
,”
J. Biomed. Mater. Res.
0021-9304,
27
, pp.
167
175
.
30.
Rancourt
,
D.
,
Shirazi-Adl
,
A.
,
Drouin
,
G.
, and
Paiement
,
G.
, 1990, “
Friction Properties of the Interface Between Porous-Surfaced Metals And Tibial Cancellous Bone
,”
J. Biomed. Mater. Res.
0021-9304,
24
, pp.
1503
1519
.
31.
Viceconti
,
M.
,
Muccini
,
R.
,
Bernakiewicz
,
M.
,
Baleani
,
M.
, and
Cristofolini
,
L.
, 2000, “
Large-Sliding Contact Elements Accurately Predict Levels of Bone-Implant Micromotion Relevant to Osseointegration
,”
J. Biomech.
0021-9290,
33
, pp.
1611
1618
.
32.
Fessler
,
H.
, and
Fricker
,
D. C.
, 1989, “
Friction in Femoral Prosthesis and Photoelastic Model Cone Taper Joints
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
203
, pp.
1
14
.
33.
Viceconti
,
M.
,
Bellingeri
,
L.
,
Cristofolini
,
L.
, and
Toni
,
A
, 1998, “
A Comparative Study on Different Methods of Automatic Mesh Generation of Human Femurs
,”
Med. Eng. Phys.
1350-4533,
20
, pp.
1
10
.
34.
Polgar
,
K.
,
Viceconti
,
M.
, and
Connor
,
J. J.
, 2001, “
A Comparison Between Automatically Generated Linear and Parabolic Tetrahedra When Used to Mesh a Human Femur
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
215H
, pp.
85
94
.
35.
Keyak
,
J. H.
,
Fourkas
,
M. G.
,
Meagher
,
J. M.
, and
Skinner
,
H. B.
, 1993, “
Validation of an Automated Method of Three-Dimensional Finite Element Modelling of Bone
,”
J. Biomed. Eng.
0141-5425,
15
, pp.
505
509
.
36.
Waide
,
V.
,
Cristofolini
,
L.
,
Stolk
,
J.
,
Verdonschot
,
N.
, and
Toni
,
A.
, 2003, “
Experimental Investigation of Bone Remodelling Using Composite Femurs
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
18
, pp.
523
536
.
37.
Stolk
,
J.
,
Verdonschot
,
N.
,
Cristofolini
,
L.
,
Toni
,
A.
, and
Huiskes
,
R.
, 2002, “
Finite Element and Experimental Models of Cemented Hip Joint Reconstructions Can Produce Similar Bone and Cement Strains in Pre-Clinical Tests
,”
J. Biomech.
0021-9290,
35
, pp.
499
510
.
38.
Bourne
,
R. B.
, and
Finlay
,
J. B.
, 1986, “
The Influence of Tibial Component Intramedullary Stems and Implant-Cortex Contact on the Strain Distribution of the Proximal Tibial Following Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
208
, pp.
95
99
.
You do not currently have access to this content.