Osmotic, electrostatic, and/or hydrational swellings are essential mechanisms in the deformation behavior of porous media, such as biological tissues, synthetic hydrogels, and clay-rich rocks. Present theories are restricted to incompressible constituents. This assumption typically fails for bone, in which electrokinetic effects are closely coupled to deformation. An electrochemomechanical formulation of quasistatic finite deformation of compressible charged porous media is derived from the theory of mixtures. The model consists of a compressible charged porous solid saturated with a compressible ionic solution. Four constituents following different kinematic paths are identified: a charged solid and three streaming constituents carrying either a positive, negative, or no electrical charge, which are the cations, anions, and fluid, respectively. The finite deformation model is reduced to infinitesimal theory. In the limiting case without ionic effects, the presented model is consistent with Blot’s theory. Viscous drag compression is computed under closed circuit and open circuit conditions. Viscous drag compression is shown to be independent of the storage modulus. A compressible version of the electrochemomechanical theory is formulated. Using material parameter values for bone, the theory predicts a substantial influence of density changes on a viscous drag compression simulation. In the context of quasistatic deformations, conflicts between poromechanics and mixture theory are only semantic in nature.

1.
Helfferich
,
F.
, 1962,
Ion Exchange
,
McGraw Hill
,
New York
.
2.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
3
), pp.
198
207
.
3.
Simon
,
B. R.
,
Liable
,
J. P.
,
Pflaster
,
D.
,
Yuan
,
Y.
, and
Krag
,
M. H.
, 1996, “
A Poroelastic Finite Element Formulation Including Transport and Swelling in Soft Tissue Structures
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
1
9
.
4.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
, 1997, “
Quadriphasic Theory of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
0020-7225,
35
, pp.
793
802
.
5.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
, 1999, “
Thermo-chemo-electro-mechanical Formulation of Saturated Charged Porous Solids
,”
Transp. Porous Media
0169-3913,
34
, pp.
129
141
.
6.
Otter
,
M. W.
,
Palmieri
,
V. R.
,
Wu
,
D. D.
,
Seiz
,
K. G.
,
MacGinitie
,
L. A.
, and
Cochran
,
G. V. B.
, 1992, “
A Comparative Analysis of Streaming Potentials in Vivo and In Vitro
,”
J. Orthop. Res.
0736-0266,
10
, pp.
710
719
.
7.
Cowin
,
S. C.
,
Weinbaum
,
S.
, and
Zeng
,
Y.
, 1995, “
A Case for Bone Cannaliculi as the Anatomical Site of Strain Generated Potential
,”
J. Biomech.
0021-9290,
28
(
11
), pp.
1281
1297
.
8.
Huyghe
,
J. M.
, and
Smit
,
T. H.
, 2004, “
Comment les Cellules de l’os Ressentent-elles une Contrainte Mécanique?
,”
Arch. Physiol. Biochem.
1381-3455,
112
, pp.
48
50
.
9.
Smit
,
T. H.
,
Burger
,
E. H.
, and
Huyghe
,
J. M.
, 2002, “
A Case for Strain-Induced Fluid Flow as Regulators of BMU-Coupling and Osteonal Alignment
,”
J. Bone Miner. Res.
0884-0431,
17
, pp.
2021
2029
.
10.
Smit
,
T. H.
,
Huyghe
,
J. M.
, and
Cowin
,
S. C.
, 2002, “
Estimation of the Poro-Elastic Parameters of Cortical Bone
,”
J. Biomech.
0021-9290,
35
(
1
), pp.
829
835
.
11.
Mak
,
A. F. T.
, and
Zhang
,
J. D.
, 2001, “
Numerical Simulation of Streaming Potentials Due to Deformation-Induced Hierachical Flows in Cortical Bone
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
66
70
.
12.
Park
,
J. B.
, and
Lakes
,
R. S.
, 1992,
Biomaterials: An Introduction
,
2nd ed.
,
Plenum
,
New York
.
13.
Oomens
,
C. W. J.
,
De Heus
,
H. J.
,
Huyghe
,
J. M.
,
Nelissen
,
J. G. L.
, and
Janssen
,
J. D.
, 1996, “
Validation of Triphasic Mixture Theory for a Mimic of Intervertebral Disk Tissue
,”
Biomimetics
,
3
(
4
), pp.
171
185
.
14.
van Olphen
,
H.
, 1977,
An Introduction to Clay Colloid Chemistry
,
2nd ed.
,
Wiley
,
New York
.
15.
Israelachvili
,
J. N.
, 1991,
Intermolecular and Surface Forces
,
2nd ed.
,
Academic
,
London
.
16.
Bol
,
G. M.
,
Wong
,
S.-W.
,
Davidson
,
C. J.
, and
Woodland
,
D. C.
, 1992, “
Borehole Stability in Shales
,”
Proceedings of the European Petroleum Conference
,
Cannes, France
, Paper No. SPE 24975, pp.
16
18
.
17.
Terzaghi
,
K.
, 1923, “
Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der Hydrodynamischen Spannungserscheinung
,”
Akademie der Wissenschaften, Mathematish-naturwissenschaftliche, Klasse
,
Vienna
, Pt. IIa, Vol.
132
, pp.
125
138
.
18.
Biot
,
M. A.
, 1941, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
0021-8979,
12
, pp.
155
164
.
19.
Biot
,
M. A.
, 1956, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid, Part I: Low Frequency Range
,”
J. Acoust. Soc. Am.
0001-4966,
28
, pp.
168
178
;
Biot
,
M. A.
,“
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid, Part II: Higher Frequency Range
,”
J. Acoust. Soc. Am.
0001-4966,
28
, pp.
179
191
.
20.
Biot
,
M. A.
, and
Willis
,
D. G.
, 1957, “
The Elastic Coefficients of the Theory of Consolidation
,”
J. Astrophys. Astron.
0250-6335,
24
, pp.
594
601
.
21.
Rice
,
J. R.
, and
Cleary
,
M. P.
, 1976, “
Some Basic Stress-Diffusion Solutions for Fluid-Saturated Elastic Porous Media With Compressible Constituents
,”
Rev. Geophys. Space Phys.
0034-6853,
14
, pp.
227
241
.
22.
Detournay
,
E.
, and
Cheng
,
A. H.-D.
, 1993, “
Fundamentals of Poro-Elasticity
,” in
Comprehensive Rock Engineering
,
J.
Hudson
, ed.,
Pergamon
,
New York
, Vol.
2
, pp.
113
169
.
23.
Eringen
,
A. C.
, 1994, “
A Continuum Theory of Swelling Porous Elastic Soils
,”
Int. J. Eng. Sci.
0020-7225,
32
, pp.
1337
1349
.
24.
Murad
,
M. A.
,
Bennethum
,
L. S.
, and
Cushman
,
J. H.
, 1995, “
A Multi-Scale Theory of Swelling Porous Media: I. Application to One-Dimensional Consolidation
,”
Transp. Porous Media
0169-3913,
19
, pp.
93
122
.
25.
Coussy
,
O.
, 1995,
Mechanics of Porous Continua
,
Wiley
,
New York
.
26.
de Boer
,
R.
, 2000,
Theory of Porous Media, Highlights in the Historical Development and Current State
,
Springer-Verlag
,
Berlin
.
27.
Biot
,
M. A.
, 1972, “
Theory of Finite Deformations of Porous Solids
,”
Indiana Univ. Math. J.
0022-2518,
21
, pp.
597
620
.
28.
Heidug
,
W. K.
, and
Wong
,
S.-W.
, 1996, “
Hydration Swelling of Water-Absorbing Rocks. A Constitutive Model
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
20
(
6
), pp.
403
431
.
29.
Bowen
,
R. M.
, 1980, “
Incompressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
0020-7225,
18
, pp.
1129
1148
.
30.
Bowen
,
R. M.
, 1982, “
Compressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
0020-7225,
20
, pp.
697
735
.
31.
Müller
,
I.
, 1985,
Thermodynamics
,
Pitman Advanced Publishing Program
,
Boston
.
32.
Grodzinsky
,
A. J.
,
Roth
,
V.
,
Myers
,
E.
,
Grossman
,
W. D.
, and
Mow
,
V. C.
, 1981, “
The Significance of Electromechanical and Osmotic Forces in the Nonequilibrium Swelling Behavior of Articular Cartilage in Tension
,”
ASME J. Biomech. Eng.
0148-0731,
103
, pp.
221
231
.
33.
Coleman
,
B. D.
, and
Noll
,
W.
, 1963, “
The Thermodynamics of Elastic Materials With Heat Conduction and Viscosity
,”
Arch. Ration. Mech. Anal.
0003-9527,
13
, pp.
167
178
.
34.
Drumheller
,
D. S.
, 1978, “
The Theoretical Treatment of a Porous Solid Using a Mixture Theory
,”
Int. J. Solids Struct.
0020-7683,
14
, pp.
441
456
.
35.
Cowin
,
S. C.
, 2004, “
Anisotropic Poroelasticity: Fabric Tensor Formulation
,”
Mech. Mater.
0167-6636,
36
, pp.
665
677
.
36.
Biot
,
M. A.
, 1962, “
Generalized Theory of Acoustic Propagation in Porous Dissipative Media
,”
J. Acoust. Soc. Am.
0001-4966,
34
, pp.
1254
1264
.
37.
Kiil
,
F.
, 1989, “
Molecular Mechanisms of Osmosis
,”
Am. J. Physiol.
0002-9513,
256
, pp.
R801
808
.
38.
Huyghe
,
J. M.
, “
Analytical Solution of a Pressure Transmission Experiment on Shale Using Electrochemomechanical Theory
,”
J. Eng. Mech.
, in press.
39.
Lai
,
W. M.
,
Mow
,
V. C.
,
Sun
,
D. D.
, and
Athesian
,
G. A.
, 2000, “
On the Electric Potentials Inside a Charged Soft Hydrated Biological Tissue: Streaming Potential Versus Diffusion Potential
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
336
346
.
You do not currently have access to this content.