All existing constitutive models for heart valve leaflet tissues either assume a uniform transmural stress distribution or utilize a membrane tension formulation. Both approaches ignore layer specific mechanical contributions and the implicit nonuniformity of the transmural stress distribution. To begin to address these limitations, we conducted novel studies to quantify the biaxial mechanical behavior of the two structurally distinct, load bearing aortic valve (AV) leaflet layers: the fibrosa and ventricularis. Strip biaxial tests, with extremely sensitive force sensing capabilities, were further utilized to determine the mechanical behavior of the separated ventricularis layer at very low stress levels. Results indicated that both layers exhibited very different nonlinear, highly anisotropic mechanical behaviors. While the leaflet tissue mechanical response was dominated by the fibrosa layer, the ventricularis contributed double the amount of the fibrosa to the total radial tension and experienced four times the stress level. The strip biaxial test results further indicated that the ventricularis exhibited substantial anisotropic mechanical properties at very low stress levels. This result suggested that for all strain levels, the ventricularis layer is dominated by circumferentially oriented collagen fibers, and the initial loading phase of this layer cannot be modeled as an isotropic material. Histological-based thickness measurements indicated that the fibrosa and ventricularis constitute 41% and 29% of the total layer thickness, respectively. Moreover, the extensive network of interlayer connections and identical strains under biaxial loading in the intact state suggests that these layers are tightly bonded. In addition to advancing our knowledge of the subtle but important mechanical properties of the AV leaflet, this study provided a comprehensive database required for the development of a true 3D stress constitutive model for the native AV leaflet.

1.
AHA, Heart Disease and Stroke Statistics—2003 update, 2002, American Heart Association, Dallas, TX.
2.
Schoen
,
F.
, 1997, “
Aortic Valve Structure-Function Correlations: Role of Elastic Fibers No Longer a Stretch of the Imagination
,”
J. Heart Valve Dis.
0966-8519,
6
, pp.
1
6
.
3.
Filip
,
D. A.
,
Radu
,
A.
, and
Simionescu
,
M.
, 1986, “
Interstitial Cells of the Heart Valve Possess Characteristics Similar to Smooth Muscle Cells
,”
Circ. Res.
0009-7330,
59
(
3
), pp.
310
320
.
4.
Messier
,
R. H.
, Jr.
,
Bass
,
B. L.
,
Aly
,
H. M.
,
Jones
,
J. L.
,
Domkowski
,
P. W.
,
Wallace
,
R. B.
, and
Hopkins
,
R. A.
, 1994, “
Dual Structural and Functional Phenotypes of the Porcine Aortic Valve Interstitial Population: Characteristics of the Leaflet Myofibroblast
,”
J. Surg. Res.
0022-4804,
57
(
1
), pp.
1
21
.
5.
Mulholland
,
D. L.
, and
Gotlieb
,
A. I.
, 1996, “
Cell Biology of Valvular Interstitial Cells
,”
Can. J. Cardiol.
0828-282X,
12
(
3
), pp.
231
236
.
6.
Taylor
,
P. M.
,
Batten
,
P.
,
Brand
,
N. J.
,
Thomas
,
P. S.
, and
Yacoub
,
M. H.
, 2003, “
The Cardiac Valve Interstitial Cell
,”
Int. J. Biochem. Cell Biol.
1357-2725,
35
(
2
), pp.
113
118
.
7.
Vesely
,
I.
, and
Lozon
,
A.
, 1993, “
Natural Preload of Aortic Valve Leaflet Components During Glutaraldehyde Fixation: Effects on Tissue Mechanics
,”
J. Biomech.
0021-9290,
26
(
2
), pp.
121
131
.
8.
Vesely
,
I.
, 1998, “
The Role of Elastin in Aortic Valve Mechanics
,”
J. Biomech.
0021-9290,
31
(
2
), pp.
115
123
.
9.
Vesely
,
I.
, 1996, “
Reconstruction of Loads in the Fibrosa and Ventricularis of Porcine Aortic Valves
,”
ASAIO J.
1058-2916,
42
(
5
), pp.
M739
746
.
10.
Vesely
,
I.
, and
Noseworthy
,
R.
, 1992, “
Micromechanics of the Fibrosa and the Ventricularis in Aortic Valve Leaflets
,”
J. Biomech.
0021-9290,
25
(
1
), pp.
101
113
.
11.
Talman
,
E. A.
, and
Boughner
,
D. R.
, 2001, “
Effect of Altered Hydration on the Internal Shear Properties of Porcine Aortic Valve Cusps
,”
Ann. Thorac. Surg.
0003-4975,
71
(
5
), pp.
S375
S378
.
12.
Talman
,
E. A.
, and
Boughner
,
D. R.
, 1995, “
Glutaraldehyde Fixation Alters the Internal Shear Properties of Porcine Aortic Heart Valve Tissue
,”
Ann. Thorac. Surg.
0003-4975,
60
, pp.
S369
S373
.
13.
Talman
,
E.
, and
Boughner
,
D. R.
, 1996, “
Internal Shear Properties of Fresh Porcine Aortic Valve Cusps: Implications for Normal Valve Function
,”
J. Heart Valve Dis.
0966-8519,
5
(
2
), pp.
152
159
.
14.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
, 1998, “
The Aortic Valve Microstructure: Effects of Transvalvular Pressure
,”
J. Biomed. Mater. Res.
0021-9304,
41
(
1
), pp.
131
141
.
15.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part I: Experimental Results
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
1
), pp.
23
30
.
16.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
4
), pp.
327
335
.
17.
Christie
,
G. W.
, and
Barratt-Boyes
,
B. G.
, 1995, “
Age-Dependent Changes in the Radial Stretch of Human Aortic Valve Leaflets Determined by Biaxial Stretching
,”
Ann. Thorac. Surg.
0003-4975,
60
, pp.
S156
159
.
18.
Christie
,
G. W.
, and
Barratt-Boyes
,
B. G.
, 1995, “
Mechanical Properties of Porcine Pulmonary Valve Leaflets: How Do They Differ From Aortic Leaflets
?”
Ann. Thorac. Surg.
0003-4975,
60
(
2
), pp.
S195
199
.
19.
Sacks
,
M. S.
,
Lam
,
T. V.
, and
Stella
,
J.
, “
A Structural Constitutive Model for the Native Pulmonary Heart Valve Leaflet
,”
ASME J. Biomech. Eng.
0148-0731, submitted.
20.
May-Newman
,
K.
, and
Yin
,
F. C.
, 1998, “
A Constitutive Law for Mitral Valve Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
1
), pp.
38
47
.
21.
Driessen
,
N. J.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
, 2005, “
Improved Prediction of the Collagen Fiber Architecture in the Aortic Heart Valve
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
2
), pp.
329
336
.
22.
Woo
,
S.
,
Orland
,
C. A.
,
Camp
,
J. F.
, and
Akeson
,
W. H.
, 1994, “
Effects of Postmortem Storage by Freezing on Ligament Tensile Behavior
,”
J. Biomech.
0021-9290,
19
, pp.
399
404
.
23.
Spencer
,
A. J. M.
, 1980,
Continuum Mechanics
,
Longman Scientific & Technical
,
New York
, p.
183
.
24.
Engelmayr
,
G. C.
, Jr.
,
Sales
,
V. L.
,
Mayer
,
J. E.
, Jr.
, and
Sacks
,
M. S.
, 2006, “
Cyclic Flexure and Laminar Flow Synergistically Accelerate Mesenchymal Stem Cell-Mediated Engineered Tissue Formation: Implications for Engineered Heart Valve Tissues
,”
Biomaterials
0142-9612,
27
(
36
), pp.
6083
6095
.
25.
Sauren
,
A. A.
,
Kuijpers
,
W.
,
van Steenhoven
,
A. A.
, and
Veldpaus
,
F. E.
, 1980, “
Aortic Valve Histology and Its Relation With Mechanics—Preliminary Report
,”
J. Biomech.
0021-9290,
13
(
2
), pp.
97
104
.
26.
Thubrikar
,
M.
, 1990,
The Aortic Valve
,
CRC
,
Boca Raton, FL
, p.
221
.
27.
Mirnajafi
,
A.
,
Raymer
,
J.
,
McClure
,
L. R.
, and
Sacks
,
M. S.
, “
The Flexural Rigidity of the Aortic Valve Leaflet in the Commissural Region
,”
J. Biomech.
0021-9290, in press.
28.
Mohri
,
H.
,
Reichenback
,
D.
, and
Merendino
,
K.
, 1972, “
Biology of Homologous and Heterologous Aortic Valves
,”
Biological Tissue in Heart Valve Replacement
,
M.
Ionescu
,
D.
Ross
, and
G.
Wooler
, eds.,
Butterworths
,
London
, p.
137
.
29.
Mohri H
,
R. D.
, and
Merendino
,
K. A.
, 1972,
Biological tissue in heart valve replacement
,
Butterworths
,
London
, pp.
137
194
.
You do not currently have access to this content.