Low Reynolds number flows (Re<1) in the human pulmonary acinus are often difficult to assess due to the submillimeter dimensions and accessibility of the region. In the present computational study, we simulated three-dimensional alveolar flows in an alveolated duct at each generation of the pulmonary acinar tree using recent morphometric data. Rhythmic lung expansion and contraction motion was modeled using moving wall boundary conditions to simulate realistic sedentary tidal breathing. The resulting alveolar flow patterns are largely time independent and governed by the ratio of the alveolar to ductal flow rates, Q̇aQ̇d. This ratio depends uniquely on geometrical configuration such that alveolar flow patterns may be entirely determined by the location of the alveoli along the acinar tree. Although flows within alveoli travel very slowly relative to those in acinar ducts, 0.021%UaUd9.1%, they may exhibit complex patterns linked to the three-dimensional nature of the flow and confirm findings from earlier three-dimensional simulations. Such patterns are largely determined by the interplay between recirculation in the cavity induced by ductal shear flow over the alveolar opening and radial flows induced by wall displacement. Furthermore, alveolar flow patterns under rhythmic wall motion contrast sharply with results obtained in a rigid alveolus, further confirming the importance of including inherent wall motion to understand realistic acinar flow phenomena. The present findings may give further insight into the role of convective alveolar flows in determining aerosol kinematics and deposition in the pulmonary acinus.

1.
Cintokai
,
F. F.
, 1974, “
Fluid Flow in a Model Alveolar Sac
,”
J. Appl. Physiol.
0021-8987,
37
, pp.
249
251
.
2.
Federspiel
,
W. J.
, and
Fredberg
,
J. J.
, 1988, “
Axial Dispersion in Respiratory Bronchioles and Alveolar Ducts
,”
J. Appl. Physiol.
8750-7587,
64
, pp.
2614
2621
.
3.
Karl
,
A.
,
Henry
,
F. S.
, and
Tsuda
,
A.
, 2004, “
Low Reynolds Number Viscous Flow in an Alveolated Duct
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
420
429
.
4.
Haefeli-Bleuer
,
B.
, and
Weibel
,
E. R.
, 1988, “
Morphometry of the Human Pulmonary Acinus
,”
Anat. Rec.
0003-276X,
220
, pp.
401
414
.
5.
Hansen
,
J. E.
,
Ampaya
,
E. P.
,
Bryant
,
G. H.
, and
Navin
,
J. J.
, 1975, “
Branching Pattern of Airways and Air Spaces of a Single Human Terminal Bronchiole
,”
J. Appl. Physiol.
8750-7587,
38
, pp.
983
989
.
6.
Weibel
,
E. R.
, 1963,
Morphometry of the Human Lung
,
Springer-Verlag
,
Berlin
.
7.
Hammersley
,
J. R.
, and
Olson
,
D. E.
, 1992, “
Physical Models of the Pulmonary Airways
,”
J. Appl. Physiol.
8750-7587,
72
, pp.
2404
2414
.
8.
Gil
,
J.
,
Bachofen
,
H.
,
Gehr
,
P.
, and
Weibel
,
E. R.
, 1979, “
Alveolar Volume-Surface Area Relation in Air- and Saline-Filled Lungs Fixed by Vascular Perfusion
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
0161-7567,
47
, pp.
990
1001
.
9.
Gil
,
J.
, and
Weibel
,
E. R.
, 1972, “
Morphological Study of Pressure-Volume Hysteresis in Rat Lungs Fixed by Vascular Perfusion
,”
Respir. Physiol.
0034-5687,
15
, pp.
190
213
.
10.
Ardilla
,
R.
,
Horie
,
T.
, and
Hidebrandt
,
J.
, 1974, “
Macroscopic Isotropy of Lung Expansion
,”
J. Appl. Physiol.
0021-8987,
20
, pp.
105
115
.
11.
Nunn
,
J. F.
, 1993,
Nunn’s Applied Respiratory Physiology
,
Butterworth-Heinemann
,
Oxford
.
12.
Scarpelli
,
E. M.
, 1990,
Pulmonary Physiology: Fetus, Newborn, Child and Adolescent
,
Lea & Febiger
,
Philadelphia
.
13.
Henry
,
F. S.
,
Butler
,
J. P.
, and
Tsuda
,
A.
, 2002, “
Kinematically Irreversible Acinar Flow: A Departure From Classical Dispersive Aerosol Transport Theories
,”
J. Appl. Physiol.
8750-7587,
92
, pp.
835
845
.
14.
Tsuda
,
A.
,
Henry
,
F. S.
, and
Butler
,
J. P
, 1995, “
Chaotic Mixing of Alveolated Duct Flow in Rhythmically Expanding Pulmonary Acinus
,”
J. Appl. Physiol.
8750-7587,
79
, pp.
1055
1063
.
15.
Davidson
,
M. R.
, and
Fitz-Gerald
,
J. M.
, 1972, “
Flow Patterns in Models of Small Airway Units of the Lung
,”
J. Fluid Mech.
0022-1120,
52
, pp.
161
177
.
16.
Sapoval
,
B.
,
Filoche
,
M.
, and
Weibel
,
E. R.
, 2002, “
Smaller is Better—But not too Small: A Physical Scale for the Design of the Mammalian Pulmonary Acinus
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
, pp.
10411
10416
.
17.
Weibel
,
E. R.
,
Sapoval
,
B.
, and
Filoche
,
M.
, 2005, “
Design of Peripheral Airways for Efficient Gas Exchange
,”
Respir. Physiol. Neurobiol.
1569-9048,
148
, pp.
3
21
.
18.
Tsuda
,
A.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
, 1994, “
Effects of Alveolated Duct Structure on Aerosol Kinetics. I. Diffusional Deposition in the Absence of Gravity
,”
J. Appl. Physiol.
8750-7587,
76
, pp.
2497
2509
.
19.
Tsuda
,
A.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
, 1994, “
Effects of Alveolated Duct Structure on Aerosol Kinetics. II. Gravitational Sedimentation and Inertial Impaction
,”
J. Appl. Physiol.
8750-7587,
76
, pp.
2510
2516
.
20.
Darquenne
,
C.
, 2001, “
A Realistic Two-Dimensional Model of Aerosol Transport and Deposition in the Alveolar Zone of the Human Lung
,”
J. Aerosol Sci.
0021-8502,
32
, pp.
1161
1174
.
21.
Haber
,
S.
,
Butler
,
J. P.
,
Brenner
,
H.
,
Emanuel
,
I.
, and
Tsuda
,
A.
, 2000, “
Shear Flow Over Self-similar Expanding Pulmonary Alveolus During Rythmical Breathing
,”
J. Fluid Mech.
0022-1120,
405
, pp.
243
268
.
22.
Ansys Inc.
, 2004, CFX-5.7.1, Ansys, Inc. Canonsburg, PA.
23.
Podgorski
,
A.
, and
Gradon
,
L.
, 1993, “
An Improved Mathematical Model of Hydrodynamical Self-cleansing of Pulmonary Alveoli
,”
Ann. Occup. Hyg.
0003-4878,
37
, pp.
347
365
.
24.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Academic
,
New York
.
25.
Sadri
,
R. M.
, and
Floryan
,
J. M.
, 2002, “
Accurate Evaluation of the Loss Coefficient and the Entrance Length of the Inlet Region of a Channel
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
685
693
.
26.
Gravesen
,
P.
,
Branebjerg
,
J.
, and
Jensen
,
O. S.
, 1993, “
Microfluidics—A Review
,”
J. Micromech. Microeng.
0960-1317,
3
, pp.
168
182
.
27.
Pozrikidis
,
C.
, 1994, “
Shear Flow Over a Plane Wall With an Axisymmetric Cavity or a Circular Orifice of Finite Thickness
,”
Phys. Fluids
1070-6631,
6
, pp.
68
79
.
28.
Pedley
,
T. J.
, 1977, “
Pulmonary Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
0066-4189,
9
, pp.
229
274
.
29.
Fung
,
Y. C.
, 1990,
Biomechanics: Motion, Flow, Stress and Growth
,
Springer-Verlag
,
Berlin
.
30.
Fung
,
Y. C.
, 1988, “
A Model of the Lung Structure and Its Validation
,”
J. Appl. Physiol.
8750-7587,
64
, pp.
2132
2141
.
31.
Haber
,
S.
,
Yitzhak
,
D.
, and
Tsuda
,
A.
, 2003, “
Gravitational Deposition in a Rhythmically Expanding and Contracting Alveolus
,”
J. Appl. Physiol.
8750-7587,
95
, pp.
657
671
.
32.
Taneda
,
S.
, 1979, “
Visualization of Separating Stokes Flow
,”
J. Phys. Soc. Jpn.
0031-9015,
46
, pp.
1935
1942
.
33.
Haber
,
S.
, and
Tsuda
,
A.
, 1998, “
The Effect of Flow Generated by a Rythmically Expanding Pulmonary Acinus on Aerosol Dynamics
,”
J. Aerosol Sci.
0021-8502,
29
, pp.
309
322
.
You do not currently have access to this content.