In a recent paper, Peng et al. (2006, “An Anisotropic Hyperelastic Constitutive Model With Fiber-Matrix Interaction for the Human Annulus Fibrosis,” ASME J. Appl. Mech., 73(5), pp. 815–824) developed an anisotropic hyperelastic constitutive model for the human annulus fibrosus in which fiber-matrix interaction plays a crucial role in simulating experimental observations reported in the literature. Later, Guo et al. (2006, “A Composites-Based Hyperelastic Constitutive Model for Soft Tissue With Application to the Human Fibrosis,” J. Mech. Phys. Solids, 54(9), pp. 1952–1971) used fiber reinforced continuum mechanics theory to formulate a model in which the fiber-matrix interaction was simulated using only composite effect. It was shown in these studies that the classical anisotropic hyperelastic constitutive models for soft tissue, which do not account for this shear interaction, cannot accurately simulate the test data on human annulus fibrosus. In this study, we show that the microplane model for soft tissue developed by Caner and Carol (2006, “Microplane Constitutive Model and Computational Framework for Blood Vessel Tissue,” ASME J. Biomech. Eng., 128(3), pp. 419–427) can be adjusted for human annulus fibrosus and the resulting model can accurately simulate the experimental observations without explicit fiber-matrix interaction because, in microplane model, the shear interaction between the individual fibers distributed in the tissue provides the required additional rigidity to explain these experimental facts. The intensity of the shear interaction between the fibers can be adjusted by adjusting the spread in the distribution while keeping the total amount of the fiber constant. A comparison of results obtained from (i) a fiber-matrix parallel coupling model, which does not account for the fiber-matrix interaction, (ii) the same model but enriched with fiber-matrix interaction, and (iii) microplane model for soft tissue adapted to annulus fibrosus with two families of fiber distributions is presented. The conclusions are (i) that varying degrees of fiber-fiber and fiber-matrix shear interaction must be taking place in the human annulus fibrosus, (ii) that this shear interaction is essential to be able to explain the mechanical behavior of human annulus fibrosus, and (iii) that microplane model can be fortified with fiber-matrix interaction in a straightforward manner provided that there are new experimental data on distribution of fibers, which indicate a spread so small that it requires an explicit fiber-matrix interaction to be able to simulate the experimental data.

1.
White
,
A. A.
, and
Panjabi
,
M. M.
, 1990,
Clinical Biomechanics of the Spine
,
Lippincott Williams & Wilkins
,
New York
.
2.
Cassidy
,
J. J.
,
Hiltner
,
A.
, and
Baer
,
E.
, 1989, “
Hierarchical Structure of the Intervertebral Disk
,”
Connect. Tissue Res.
0300-8207,
23
, pp.
75
88
.
3.
Hickey
,
D. S.
, and
Hukins
,
D. W. L.
, 1980, “
X-Ray Diffraction Studies of the Arrangement of Collagenous Fibers in Human Fetal Intervertebral Disc
,”
J. Anat.
0021-8782,
131
, pp.
81
90
.
4.
Stokes
,
I. A.
, and
Iatridis
,
J. C.
, 2004, “
Mechanical Conditions That Accelerate Intervertebral Disc Degeneration: Overload vs. Immobilization
,”
Spine
0362-2436,
29
(
23
), pp.
2724
2732
.
5.
Oda
,
H.
,
Matsuzaki
,
H.
,
Tokuhashi
,
Y.
,
Wakabayashi
,
K.
,
Uematsu
,
Y.
, and
Iwahashi
,
M.
, 2004, “
Degeneration of Intervertebral Discs Due to Smoking: Experimental Assessment in a Rat-Smoking Model
,”
J. Orthop. Sci.
0949-2658,
9
(
2
), pp.
135
141
.
6.
Matge
,
G.
, 1998, “
Anterior Interbody Fusion With the BAK-Cage in Cervical Spondylosis
,”
Acta Neurochir.
0001-6268,
140
(
1
), pp.
1
8
.
7.
Sekhon
,
L. H. S.
, 2004, “
Two-Level Artificial Disc Placement for Spondylotic Cervical Myelopathy
,”
J. Neuropsychiatry Clin. Neurosci.
0895-0172,
11
(
4
), pp.
412
415
.
8.
Galante
,
J. O.
, 1967, “
Tensile Properties of the Human Lumbar Annulus Fibrosus
,”
Acta Orthop. Scand. Suppl.
0300-8827,
100
, pp.
4
91
.
9.
Wu
,
H. C.
, and
Yao
,
R. F.
, 1976, “
Mechanical Behavior of the Human Annulus Fibrosis
,”
ASME J. Biomech. Eng.
0148-0731,
9
, pp.
1
7
.
10.
Adams
,
M. A.
, and
Green
,
T. P.
, 1993, “
Tensile Properties of the Annulus Fibrosus: I. The Contribution of Fiber-Matrix Interactions to Tensile Stiffness and Strength
,”
Eur. Spine J.
0940-6719,
2
, pp.
203
208
.
11.
Green
,
T. P.
,
Adams
,
M. A.
, and
Dolan
,
P.
, 1993, “
Tensile Properties of the Annulus Fibrosus: II. Ultimate Tensile Strength and Fatigue Life
,”
Eur. Spine J.
0940-6719,
2
, pp.
209
214
.
12.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Iatridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
, 1994, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Annulus Fibrosus
,”
Spine
0362-2436,
19
, pp.
1310
1319
.
13.
Acaroglu
,
E. R.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
, 1995, “
Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Annulus Fibrosus
,”
Spine
0362-2436,
20
, pp.
2690
2701
.
14.
Ebara
,
S.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
, 1996, “
Tensile Properties of Nondegenerate Human Lumbar Annulus Fibrosus
,”
Spine
0362-2436,
21
, pp.
452
461
.
15.
Fujita
,
Y.
,
Wagner
,
D. R.
,
Biviji
,
A. A.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
, 2000, “
Anisotropic Shear Behavior of the Annulus Fibrosus: Effect of Harvest Site and Tissue Prestrain
,”
Med. Eng. Phys.
1350-4533,
22
, pp.
349
357
.
16.
Bass
,
E. C.
,
Ashford
,
F. A.
,
Segal
,
M. R.
, and
Lotz
,
J. C.
, 2004, “
Biaxial Testing of Human Annulus Fibrosus and its Implications for a Constitutive Formulation
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
1231
1242
.
17.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A. J.
,
Feigl
,
G.
, and
Regitinig
,
P.
, 2005, “
Single Lamellar Mechanics of the Human Lumbar Annulus Fibrosus
,”
Biomechanics and Modeling in Mechanobiology
,
3
(
3
), pp.
125
140
.
18.
Spencer
,
A. J. M.
, 1972,
Deformations of Fiber-Reinforced Materials
,
Oxford Science Research Papers
,
New York
.
19.
Spencer
,
A. J. M.
, 1984,
Continuum Theory of the Mechanics of Fiber-Reinforced Composites
,
Springer
,
New York
.
20.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
21.
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
, 2002, “
A Rate-Independent Elastoplastic Constitutive Model for Biological Fiber-Reinforced Composites at Finite Strains: Continuum Basis, Algorithmic Formulation and Finite Element Implementation
,”
Comput. Mech.
0178-7675,
29
, pp.
340
360
.
22.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Fröhlich
,
M.
, 2004, “
Multi-Segment FEA of the Human Lumbar Spine Including the Heterogeneity of the Annulus Fibrosus
,”
Comput. Mech.
0178-7675,
34
, pp.
147
163
.
23.
Elliott
,
D. M.
, and
Setton
,
L. A.
, 2000, “
A Linear Material Model for Fiber-Induced Anisotropy of the Annulus Fibrosus
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
173
179
.
24.
Elliott
,
D. M.
, and
Setton
,
L. A.
, 2001, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Annulus Fibrosus: Experiments Measurement and Material Model Predictions
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
256
263
.
25.
Sun
,
D. N.
, and
Leong
,
K. W.
, 2004, “
A Nonlinear Hyperelastic Mixture Theory for Anisotropy, Transport, and Swelling of Annulus Fibrosus
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
92
102
.
26.
Demirkoparan
,
H.
, and
Pence
,
T. J.
, 2006, “
Swelling of an Internally Pressurized Nonlinearly Elastic Tube With Fiber Reinforcing
,”
Int. J. Solids Struct.
0020-7683, in press.
27.
Demirkoparan
,
H.
, and
Pence
,
T. J.
, 2007, “
The Effect of Fiber Recruitment on the Swelling of a Pressurized Anisotropic Nonlinearly Elastic Tube
,”
Int. J. Non-Linear Mech.
0020-7462,
42
(
2
), pp.
258
270
.
28.
Wagner
,
D. R.
, and
Lotz
,
J. C.
, 2004, “
Theoretical Model and Experimental Results for the Nonlinear Elastic Behavior of Human Annulus Fibrosus
,”
J. Orthop. Res.
0736-0266,
22
, pp.
901
909
.
29.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp. Part II: A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
327
335
.
30.
Sacks
,
M. S.
, 2003, “
Incorporation of Experimentally Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
J. Biomed. Eng.
0141-5425,
125
, pp.
280
287
.
31.
Caner
,
F. C.
, and
Carol
,
I.
, 2006, “
Microplane Constitutive Model and Computational Framework for Blood Vessel Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
3
), pp.
419
427
.
32.
Driessen
,
N. J. B.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
, 2005, “
A Structural Constitutive Model for Collageneous Cardiovascular Tissue Incorporating the Angular Fiber Distribution
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
494
503
.
33.
Gasser
,
C. T.
,
Ogden
,
R. W.
, and
Holzapfel
,
G.
, 2006, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations.
,”
J. R. Soc., Interface
1742-5689,
3
(
6
), pp.
15
35
.
34.
Peng
,
X. Q.
,
Guo
,
Z. Y.
, and
Moran
,
B.
, 2006, “
An Anisotropic Hyperelastic Constitutive Model With Fiber-Matrix Interaction for the Human Annulus Fibrosis
,”
ASME J. Appl. Mech.
0021-8936,
73
(
5
), pp.
815
824
.
35.
Guo
,
Z. Y.
,
Peng
,
X. Q.
, and
Moran
,
B.
, 2006, “
A Composites-Based Hyperelastic Constitutive Model for Soft Tissue With Application to the Human Annulus Fibrosis
,”
J. Mech. Phys. Solids
0022-5096,
54
(
9
), pp.
1952
1971
.
36.
Guo
,
Z. Y.
,
Peng
,
X. Q.
, and
Moran
,
B.
, 2007, “
Mechanical Response of Neo-Hookean Fiber Reinforced Incompressible Nonlinearly Elastic Solids
,”
Int. J. Solids Struct.
0020-7683,
44
(
6
), pp.
1949
1969
.
37.
Guo
,
Z. Y.
,
Peng
,
X. Q.
, and
Moran
,
B.
, 2007, “
Large Deformation Response of a Hyperelastic Fibre Reinforced Composite: Theoretical Model and Numerical Validation
,”
Composites, Part A
1359-835X,
38
, pp.
1842
1851
.
38.
Carol
,
I.
,
Jirásek
,
M.
, and
Bažant
,
Z. P.
, 2004, “
A Framework for Microplane Models at Large Strain, With Application to Hyperelasticity
,”
Int. J. Solids Struct.
0020-7683,
41
(
2
), pp.
511
557
.
39.
Malvern
,
L. E.
, 1969,
Introduction to the Mechanics of Continuous Medium
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
40.
Ogden
,
R. W.
, 1984,
Non-Linear Elastic Deformations
,
Wiley
,
New York
.
41.
Bažant
,
Z. P.
,
Caner
,
F. C.
,
Carol
,
I.
,
Adley
,
M. D.
, and
Akers
,
S. A.
, 2000, “
Microplane Model M4 for Concrete. I: Formulation With Work-Conjugate Deviatoric Stress
,”
J. Eng. Mech.
0733-9399,
126
(
9
), pp.
944
953
.
42.
Caner
,
F. C.
, and
Bažant
,
Z. P.
, 2000, “
Microplane Model M4 for Concrete. II: Algorithm and Calibration
,”
J. Eng. Mech.
0733-9399,
126
(
9
), pp.
954
961
.
43.
Bažant
,
Z. P.
, and
Zi
,
G.-S.
, 2003, “
Microplane Constitutive Model for Porous Isotropic Rocks
,”
J. Geophys. Res., [Solid Earth]
0148-0227,
108
(
B2
), pp.
2119
2129
.
44.
Brocca
,
M.
, and
Bažant
,
Z. P.
, 2000, “
Microplane Constitutive Model and Metal Plasticity
,”
Appl. Mech. Rev.
0003-6900,
53
(
10
), pp.
265
281
.
45.
Brocca
,
M.
,
Brinson
,
L. C.
, and
Bažant
,
Z. P.
, 2002, “
Three-Dimensional Constitutive Model for Shape Memory Alloys Based on Microplane Model
,”
J. Pharm. Sci.
0022-3549,
50
(
5
), pp.
1051
1077
.
46.
Caner
,
F. C.
,
Bažant
,
Z. P.
, and
Červenka
,
J.
, 2002, “
Vertex Effect in Strain-Softening Concrete at Rotating Principal Axes
,”
J. Eng. Mech.
0733-9399,
128
(
1
), pp.
24
33
.
47.
Holzapfel
,
G. A.
, 2003, “
Structural and Numerical Models for the (Visco)Elastic Response of Arterial Walls and Residual Stresses
,”
Biomechanics of Soft Tissue in Cardiovascular Systems
,
G. A.
Holzapfel
and
R. W.
Ogden
, eds.,
Springer
,
New York
, pp.
109
184
.
48.
Belytschko
,
T.
,
Liu
,
W.
, and
Moran
,
B.
, 2004,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
New York
.
49.
Ogden
,
R. W.
, 1976, “
Volume Changes Associated With the Deformation of Rubber-Like Solids
,”
J. Mech. Phys. Solids
0022-5096,
24
, pp.
323
338
.
50.
Cescotto
,
S.
, and
Fonder
,
G.
, 1979, “
A Finite Element Approach for Large Strains of Nearly Incompressible Rubber-Like Materials
,”
Int. J. Solids Struct.
0020-7683,
15
, pp.
589
605
.
51.
Sussman
,
T.
, and
Bathe
,
K.
, 1987, “
A Finite Element Formulation for Nonlinear Incompressible Elastic and Inelastic Analysis
,”
Comput. Struct.
0045-7949,
26
, pp.
357
409
.
52.
Oakley
,
D. R.
, and
Knight
,
N. F.
, 1995, “
Adaptive Dynamic Relaxation Algorithm for Non-Linear Hyperelastic Structures Part I: Formulation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
126
, pp.
67
89
.
53.
Bažant
,
Z. P.
, 2005, private communication.
54.
Stroud
,
A. H.
, 1971,
Approximate Calculation of Multiple Integrals
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
55.
Bažant
,
Z. P.
, and
Oh
,
B.-H.
, 1986, “
Efficient Numerical Integration on the Surface of a Sphere
,”
ZAMM
0044-2267,
66
(
1
), pp.
37
49
.
56.
Boerboom
,
R.
,
Driessen
,
N.
,
Bouten
,
C. V. C.
,
Huyghe
,
J. M.
, and
Baaijens
,
F. P. T.
, 2003, “
Finite Element Model of Mechanically Induced Collagen Fiber Synthesis and Degradation in the Aortic Valve
,”
Ann. Biomed. Eng.
0090-6964,
31
(
9
), pp.
1040
1053
.
57.
Wagenseil
,
J. E.
,
Elson
,
E. L.
, and
Okamoto
,
R. J.
, 2004, “
Cell Orientation Influences the Biaxial Mechanical Properties of Fibroblast Populated Collagen Vessels
,”
Ann. Biomed. Eng.
0090-6964,
32
(
5
), pp.
720
731
.
58.
Wang
,
J. H. C.
,
Jia
,
F.
,
Gilbert
,
T. W.
, and
Woo
,
S. L.
, 2003, “
Cell Orientation Determines the Alignment of Cell-Produced Collagenous Matrix
,”
ASME J. Biomech. Eng.
0148-0731,
36
(
1
), pp.
97
102
.
You do not currently have access to this content.